You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

183 lines
6.0 KiB

#include "gtest/gtest.h"
#include "src/storage/SparseMatrix.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/OutOfRangeException.h"
#include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
#include "cudaForStorm.h"
TEST(CudaPlugin, SpMV_4x4) {
storm::storage::SparseMatrixBuilder<double> matrixBuilder(4, 4, 10);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 1, 1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 3, -1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 0, 8.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 7.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 2, -5.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 3, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 0, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 1, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 2, 4.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 3, 4.0));
storm::storage::SparseMatrix<double> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(4, matrix.getRowCount());
ASSERT_EQ(4, matrix.getColumnCount());
ASSERT_EQ(10, matrix.getEntryCount());
std::vector<double> x({0, 4, 1, 1});
std::vector<double> b({0, 0, 0, 0});
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_double(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 3);
ASSERT_EQ(b.at(1), 25);
ASSERT_EQ(b.at(2), 16);
ASSERT_EQ(b.at(3), 0);
}
TEST(CudaPlugin, SpMV_VerySmall) {
storm::storage::SparseMatrixBuilder<double> matrixBuilder(2, 2, 2);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 0, 1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 2.0));
storm::storage::SparseMatrix<double> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(2, matrix.getRowCount());
ASSERT_EQ(2, matrix.getColumnCount());
ASSERT_EQ(2, matrix.getEntryCount());
std::vector<double> x({ 4.0, 8.0 });
std::vector<double> b({ 0.0, 0.0 });
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_double(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 4.0);
ASSERT_EQ(b.at(1), 16.0);
}
TEST(CudaPlugin, AddVectorsInplace) {
std::vector<double> vectorA_1 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorA_2 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorA_3 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorB = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
std::vector<double> vectorC = { -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0 };
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_double(vectorA_1, vectorB));
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_double(vectorA_2, vectorC));
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
for (size_t i = 0; i < vectorA_3.size(); ++i) {
double cpu_result_b = vectorA_3.at(i) + vectorB.at(i);
double cpu_result_c = vectorA_3.at(i) + vectorC.at(i);
ASSERT_EQ(cpu_result_b, vectorA_1.at(i));
ASSERT_EQ(cpu_result_c, vectorA_2.at(i));
}
}
TEST(CudaPlugin, ReduceGroupedVector) {
std::vector<double> groupedVector = {
0.0, -1000.0, 0.000004, // Group 0
5.0, // Group 1
0.0, 1.0, 2.0, 3.0, // Group 2
-1000.0, -3.14, -0.0002,// Group 3 (neg only)
25.25, 25.25, 25.25, // Group 4
0.0, 0.0, 1.0, // Group 5
-0.000001, 0.000001 // Group 6
};
std::vector<uint_fast64_t> grouping = {
0, 3, 4, 8, 11, 14, 17, 19
};
std::vector<double> result_minimize = {
-1000.0, // Group 0
5.0,
0.0,
-1000.0,
25.25,
0.0,
-0.000001
};
std::vector<double> result_maximize = {
0.000004,
5.0,
3.0,
-0.0002,
25.25,
1.0,
0.000001
};
std::vector<double> result_cuda_minimize = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
std::vector<double> result_cuda_maximize = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_double_minimize(groupedVector, grouping, result_cuda_minimize));
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_double_maximize(groupedVector, grouping, result_cuda_maximize));
for (size_t i = 0; i < result_minimize.size(); ++i) {
ASSERT_EQ(result_minimize.at(i), result_cuda_minimize.at(i));
ASSERT_EQ(result_maximize.at(i), result_cuda_maximize.at(i));
}
}
TEST(CudaPlugin, equalModuloPrecision) {
std::vector<double> x = {
123.45L, 67.8L, 901.23L, 456789.012L, 3.456789L, -4567890.12L
};
std::vector<double> y1 = {
0.45L, 0.8L, 0.23L, 0.012L, 0.456789L, -0.12L
};
std::vector<double> y2 = {
0.45L, 0.8L, 0.23L, 456789.012L, 0.456789L, -4567890.12L
};
std::vector<double> x2;
std::vector<double> x3;
std::vector<double> y3;
std::vector<double> y4;
x2.reserve(1000);
x3.reserve(1000);
y3.reserve(1000);
y4.reserve(1000);
for (size_t i = 0; i < 1000; ++i) {
x2.push_back(static_cast<double>(i));
y3.push_back(1.0);
x3.push_back(-(1000.0 - static_cast<double>(i)));
y4.push_back(1.0);
}
double maxElement1 = 0.0L;
double maxElement2 = 0.0L;
double maxElement3 = 0.0L;
double maxElement4 = 0.0L;
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_NonRelative(x, y1, maxElement1));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_NonRelative(x, y2, maxElement2));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_Relative(x2, y3, maxElement3));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_Relative(x3, y4, maxElement4));
ASSERT_DOUBLE_EQ(4567890.0L, maxElement1);
ASSERT_DOUBLE_EQ(901.0L, maxElement2);
ASSERT_DOUBLE_EQ(998.0L, maxElement3);
ASSERT_DOUBLE_EQ(1001.0L, maxElement4);
}
#endif