You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							656 lines
						
					
					
						
							19 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							656 lines
						
					
					
						
							19 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "quaternion_demo.h" | |
| #include "icosphere.h" | |
|  | |
| #include <Eigen/Geometry> | |
| #include <Eigen/QR> | |
| #include <Eigen/LU> | |
|  | |
| #include <iostream> | |
| #include <QEvent> | |
| #include <QMouseEvent> | |
| #include <QInputDialog> | |
| #include <QGridLayout> | |
| #include <QButtonGroup> | |
| #include <QRadioButton> | |
| #include <QDockWidget> | |
| #include <QPushButton> | |
| #include <QGroupBox> | |
|  | |
| using namespace Eigen; | |
| 
 | |
| class FancySpheres | |
| { | |
|   public: | |
|     EIGEN_MAKE_ALIGNED_OPERATOR_NEW | |
|      | |
|     FancySpheres() | |
|     { | |
|       const int levels = 4; | |
|       const float scale = 0.33; | |
|       float radius = 100; | |
|       std::vector<int> parents; | |
| 
 | |
|       // leval 0 | |
|       mCenters.push_back(Vector3f::Zero()); | |
|       parents.push_back(-1); | |
|       mRadii.push_back(radius); | |
| 
 | |
|       // generate level 1 using icosphere vertices | |
|       radius *= 0.45; | |
|       { | |
|         float dist = mRadii[0]*0.9; | |
|         for (int i=0; i<12; ++i) | |
|         { | |
|           mCenters.push_back(mIcoSphere.vertices()[i] * dist); | |
|           mRadii.push_back(radius); | |
|           parents.push_back(0); | |
|         } | |
|       } | |
| 
 | |
|       static const float angles [10] = { | |
|         0, 0, | |
|         M_PI, 0.*M_PI, | |
|         M_PI, 0.5*M_PI, | |
|         M_PI, 1.*M_PI, | |
|         M_PI, 1.5*M_PI | |
|       }; | |
| 
 | |
|       // generate other levels | |
|       int start = 1; | |
|       for (int l=1; l<levels; l++) | |
|       { | |
|         radius *= scale; | |
|         int end = mCenters.size(); | |
|         for (int i=start; i<end; ++i) | |
|         { | |
|           Vector3f c = mCenters[i]; | |
|           Vector3f ax0 = (c - mCenters[parents[i]]).normalized(); | |
|           Vector3f ax1 = ax0.unitOrthogonal(); | |
|           Quaternionf q; | |
|           q.setFromTwoVectors(Vector3f::UnitZ(), ax0); | |
|           Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius); | |
|           for (int j=0; j<5; ++j) | |
|           { | |
|             Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0) | |
|                                 * AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0) | |
|                                 * (mRadii[i] + radius*0.8); | |
|             mCenters.push_back(newC); | |
|             mRadii.push_back(radius); | |
|             parents.push_back(i); | |
|           } | |
|         } | |
|         start = end; | |
|       } | |
|     } | |
| 
 | |
|     void draw() | |
|     { | |
|       int end = mCenters.size(); | |
|       glEnable(GL_NORMALIZE); | |
|       for (int i=0; i<end; ++i) | |
|       { | |
|         Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]); | |
|         gpu.pushMatrix(GL_MODELVIEW); | |
|         gpu.multMatrix(t.matrix(),GL_MODELVIEW); | |
|         mIcoSphere.draw(2); | |
|         gpu.popMatrix(GL_MODELVIEW); | |
|       } | |
|       glDisable(GL_NORMALIZE); | |
|     } | |
|   protected: | |
|     std::vector<Vector3f> mCenters; | |
|     std::vector<float> mRadii; | |
|     IcoSphere mIcoSphere; | |
| }; | |
| 
 | |
| 
 | |
| // generic linear interpolation method | |
| template<typename T> T lerp(float t, const T& a, const T& b) | |
| { | |
|   return a*(1-t) + b*t; | |
| } | |
| 
 | |
| // quaternion slerp | |
| template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) | |
| { return a.slerp(t,b); } | |
| 
 | |
| // linear interpolation of a frame using the type OrientationType | |
| // to perform the interpolation of the orientations | |
| template<typename OrientationType> | |
| inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) | |
| { | |
|   return Frame(lerp(alpha,a.position,b.position), | |
|                Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation)))); | |
| } | |
| 
 | |
| template<typename _Scalar> class EulerAngles | |
| { | |
| public: | |
|   enum { Dim = 3 }; | |
|   typedef _Scalar Scalar; | |
|   typedef Matrix<Scalar,3,3> Matrix3; | |
|   typedef Matrix<Scalar,3,1> Vector3; | |
|   typedef Quaternion<Scalar> QuaternionType; | |
| 
 | |
| protected: | |
| 
 | |
|   Vector3 m_angles; | |
| 
 | |
| public: | |
| 
 | |
|   EulerAngles() {} | |
|   inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} | |
|   inline EulerAngles(const QuaternionType& q) { *this = q; } | |
| 
 | |
|   const Vector3& coeffs() const { return m_angles; } | |
|   Vector3& coeffs() { return m_angles; } | |
| 
 | |
|   EulerAngles& operator=(const QuaternionType& q) | |
|   { | |
|     Matrix3 m = q.toRotationMatrix(); | |
|     return *this = m; | |
|   } | |
| 
 | |
|   EulerAngles& operator=(const Matrix3& m) | |
|   { | |
|     // mat =  cy*cz          -cy*sz           sy | |
|     //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | |
|     //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | |
|     m_angles.coeffRef(1) = std::asin(m.coeff(0,2)); | |
|     m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2)); | |
|     m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0)); | |
|     return *this; | |
|   } | |
| 
 | |
|   Matrix3 toRotationMatrix(void) const | |
|   { | |
|     Vector3 c = m_angles.array().cos(); | |
|     Vector3 s = m_angles.array().sin(); | |
|     Matrix3 res; | |
|     res <<  c.y()*c.z(),                    -c.y()*s.z(),                   s.y(), | |
|             c.z()*s.x()*s.y()+c.x()*s.z(),  c.x()*c.z()-s.x()*s.y()*s.z(),  -c.y()*s.x(), | |
|             -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(),  c.x()*c.y(); | |
|     return res; | |
|   } | |
| 
 | |
|   operator QuaternionType() { return QuaternionType(toRotationMatrix()); } | |
| }; | |
| 
 | |
| // Euler angles slerp | |
| template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b) | |
| { | |
|   EulerAngles<float> res; | |
|   res.coeffs() = lerp(t, a.coeffs(), b.coeffs()); | |
|   return res; | |
| } | |
| 
 | |
| 
 | |
| RenderingWidget::RenderingWidget() | |
| { | |
|   mAnimate = false; | |
|   mCurrentTrackingMode = TM_NO_TRACK; | |
|   mNavMode = NavTurnAround; | |
|   mLerpMode = LerpQuaternion; | |
|   mRotationMode = RotationStable; | |
|   mTrackball.setCamera(&mCamera); | |
| 
 | |
|   // required to capture key press events | |
|   setFocusPolicy(Qt::ClickFocus); | |
| } | |
| 
 | |
| void RenderingWidget::grabFrame(void) | |
| { | |
|     // ask user for a time | |
|     bool ok = false; | |
|     double t = 0; | |
|     if (!m_timeline.empty()) | |
|       t = (--m_timeline.end())->first + 1.; | |
|     t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", | |
|       t, 0, 1e3, 1, &ok); | |
|     if (ok) | |
|     { | |
|       Frame aux; | |
|       aux.orientation = mCamera.viewMatrix().linear(); | |
|       aux.position = mCamera.viewMatrix().translation(); | |
|       m_timeline[t] = aux; | |
|     } | |
| } | |
| 
 | |
| void RenderingWidget::drawScene() | |
| { | |
|   static FancySpheres sFancySpheres; | |
|   float length = 50; | |
|   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1)); | |
|   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1)); | |
|   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1)); | |
| 
 | |
|   // draw the fractal object | |
|   float sqrt3 = internal::sqrt(3.); | |
|   glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data()); | |
|   glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data()); | |
|   glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data()); | |
|   glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data()); | |
| 
 | |
|   glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data()); | |
|   glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data()); | |
|   glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data()); | |
|   glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data()); | |
| 
 | |
|   glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data()); | |
|   glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data()); | |
|   glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); | |
|   glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64); | |
| 
 | |
|   glEnable(GL_LIGHTING); | |
|   glEnable(GL_LIGHT0); | |
|   glEnable(GL_LIGHT1); | |
| 
 | |
|   sFancySpheres.draw(); | |
|   glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); | |
|   glNormalPointer(GL_FLOAT, 0, mNormals[0].data()); | |
|   glEnableClientState(GL_VERTEX_ARRAY); | |
|   glEnableClientState(GL_NORMAL_ARRAY); | |
|   glDrawArrays(GL_TRIANGLES, 0, mVertices.size()); | |
|   glDisableClientState(GL_VERTEX_ARRAY); | |
|   glDisableClientState(GL_NORMAL_ARRAY); | |
| 
 | |
|   glDisable(GL_LIGHTING); | |
| } | |
| 
 | |
| void RenderingWidget::animate() | |
| { | |
|   m_alpha += double(m_timer.interval()) * 1e-3; | |
| 
 | |
|   TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha); | |
|   TimeLine::const_iterator lo = hi; | |
|   --lo; | |
| 
 | |
|   Frame currentFrame; | |
| 
 | |
|   if(hi==m_timeline.end()) | |
|   { | |
|     // end | |
|     currentFrame = lo->second; | |
|     stopAnimation(); | |
|   } | |
|   else if(hi==m_timeline.begin()) | |
|   { | |
|     // start | |
|     currentFrame = hi->second; | |
|   } | |
|   else | |
|   { | |
|     float s = (m_alpha - lo->first)/(hi->first - lo->first); | |
|     if (mLerpMode==LerpEulerAngles) | |
|       currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second); | |
|     else if (mLerpMode==LerpQuaternion) | |
|       currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second); | |
|     else | |
|     { | |
|       std::cerr << "Invalid rotation interpolation mode (abort)\n"; | |
|       exit(2); | |
|     } | |
|     currentFrame.orientation.coeffs().normalize(); | |
|   } | |
| 
 | |
|   currentFrame.orientation = currentFrame.orientation.inverse(); | |
|   currentFrame.position = - (currentFrame.orientation * currentFrame.position); | |
|   mCamera.setFrame(currentFrame); | |
| 
 | |
|   updateGL(); | |
| } | |
| 
 | |
| void RenderingWidget::keyPressEvent(QKeyEvent * e) | |
| { | |
|     switch(e->key()) | |
|     { | |
|       case Qt::Key_Up: | |
|         mCamera.zoom(2); | |
|         break; | |
|       case Qt::Key_Down: | |
|         mCamera.zoom(-2); | |
|         break; | |
|       // add a frame | |
|       case Qt::Key_G: | |
|         grabFrame(); | |
|         break; | |
|       // clear the time line | |
|       case Qt::Key_C: | |
|         m_timeline.clear(); | |
|         break; | |
|       // move the camera to initial pos | |
|       case Qt::Key_R: | |
|         resetCamera(); | |
|         break; | |
|       // start/stop the animation | |
|       case Qt::Key_A: | |
|         if (mAnimate) | |
|         { | |
|           stopAnimation(); | |
|         } | |
|         else | |
|         { | |
|           m_alpha = 0; | |
|           connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | |
|           m_timer.start(1000/30); | |
|           mAnimate = true; | |
|         } | |
|         break; | |
|       default: | |
|         break; | |
|     } | |
| 
 | |
|     updateGL(); | |
| } | |
| 
 | |
| void RenderingWidget::stopAnimation() | |
| { | |
|   disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | |
|   m_timer.stop(); | |
|   mAnimate = false; | |
|   m_alpha = 0; | |
| } | |
| 
 | |
| void RenderingWidget::mousePressEvent(QMouseEvent* e) | |
| { | |
|   mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | |
|   bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier); | |
|   switch(e->button()) | |
|   { | |
|     case Qt::LeftButton: | |
|       if(fly) | |
|       { | |
|         mCurrentTrackingMode = TM_LOCAL_ROTATE; | |
|         mTrackball.start(Trackball::Local); | |
|       } | |
|       else | |
|       { | |
|         mCurrentTrackingMode = TM_ROTATE_AROUND; | |
|         mTrackball.start(Trackball::Around); | |
|       } | |
|       mTrackball.track(mMouseCoords); | |
|       break; | |
|     case Qt::MidButton: | |
|       if(fly) | |
|         mCurrentTrackingMode = TM_FLY_Z; | |
|       else | |
|         mCurrentTrackingMode = TM_ZOOM; | |
|       break; | |
|     case Qt::RightButton: | |
|         mCurrentTrackingMode = TM_FLY_PAN; | |
|       break; | |
|     default: | |
|       break; | |
|   } | |
| } | |
| void RenderingWidget::mouseReleaseEvent(QMouseEvent*) | |
| { | |
|     mCurrentTrackingMode = TM_NO_TRACK; | |
|     updateGL(); | |
| } | |
| 
 | |
| void RenderingWidget::mouseMoveEvent(QMouseEvent* e) | |
| { | |
|     // tracking | |
|     if(mCurrentTrackingMode != TM_NO_TRACK) | |
|     { | |
|         float dx =   float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth()); | |
|         float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight()); | |
| 
 | |
|         // speedup the transformations | |
|         if(e->modifiers() & Qt::ShiftModifier) | |
|         { | |
|           dx *= 10.; | |
|           dy *= 10.; | |
|         } | |
| 
 | |
|         switch(mCurrentTrackingMode) | |
|         { | |
|           case TM_ROTATE_AROUND: | |
|           case TM_LOCAL_ROTATE: | |
|             if (mRotationMode==RotationStable) | |
|             { | |
|               // use the stable trackball implementation mapping | |
|               // the 2D coordinates to 3D points on a sphere. | |
|               mTrackball.track(Vector2i(e->pos().x(), e->pos().y())); | |
|             } | |
|             else | |
|             { | |
|               // standard approach mapping the x and y displacements as rotations | |
|               // around the camera's X and Y axes. | |
|               Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY()) | |
|                             * AngleAxisf(-dy*M_PI, Vector3f::UnitX()); | |
|               if (mCurrentTrackingMode==TM_LOCAL_ROTATE) | |
|                 mCamera.localRotate(q); | |
|               else | |
|                 mCamera.rotateAroundTarget(q); | |
|             } | |
|             break; | |
|           case TM_ZOOM : | |
|             mCamera.zoom(dy*100); | |
|             break; | |
|           case TM_FLY_Z : | |
|             mCamera.localTranslate(Vector3f(0, 0, -dy*200)); | |
|             break; | |
|           case TM_FLY_PAN : | |
|             mCamera.localTranslate(Vector3f(dx*200, dy*200, 0)); | |
|             break; | |
|           default: | |
|             break; | |
|         } | |
| 
 | |
|         updateGL(); | |
|     } | |
| 
 | |
|     mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | |
| } | |
| 
 | |
| void RenderingWidget::paintGL() | |
| { | |
|   glEnable(GL_DEPTH_TEST); | |
|   glDisable(GL_CULL_FACE); | |
|   glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); | |
|   glDisable(GL_COLOR_MATERIAL); | |
|   glDisable(GL_BLEND); | |
|   glDisable(GL_ALPHA_TEST); | |
|   glDisable(GL_TEXTURE_1D); | |
|   glDisable(GL_TEXTURE_2D); | |
|   glDisable(GL_TEXTURE_3D); | |
| 
 | |
|   // Clear buffers | |
|   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); | |
| 
 | |
|   mCamera.activateGL(); | |
| 
 | |
|   drawScene(); | |
| } | |
| 
 | |
| void RenderingWidget::initializeGL() | |
| { | |
|   glClearColor(1., 1., 1., 0.); | |
|   glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); | |
|   glDepthMask(GL_TRUE); | |
|   glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); | |
| 
 | |
|   mCamera.setPosition(Vector3f(-200, -200, -200)); | |
|   mCamera.setTarget(Vector3f(0, 0, 0)); | |
|   mInitFrame.orientation = mCamera.orientation().inverse(); | |
|   mInitFrame.position = mCamera.viewMatrix().translation(); | |
| } | |
| 
 | |
| void RenderingWidget::resizeGL(int width, int height) | |
| { | |
|     mCamera.setViewport(width,height); | |
| } | |
| 
 | |
| void RenderingWidget::setNavMode(int m) | |
| { | |
|   mNavMode = NavMode(m); | |
| } | |
| 
 | |
| void RenderingWidget::setLerpMode(int m) | |
| { | |
|   mLerpMode = LerpMode(m); | |
| } | |
| 
 | |
| void RenderingWidget::setRotationMode(int m) | |
| { | |
|   mRotationMode = RotationMode(m); | |
| } | |
| 
 | |
| void RenderingWidget::resetCamera() | |
| { | |
|   if (mAnimate) | |
|     stopAnimation(); | |
|   m_timeline.clear(); | |
|   Frame aux0 = mCamera.frame(); | |
|   aux0.orientation = aux0.orientation.inverse(); | |
|   aux0.position = mCamera.viewMatrix().translation(); | |
|   m_timeline[0] = aux0; | |
| 
 | |
|   Vector3f currentTarget = mCamera.target(); | |
|   mCamera.setTarget(Vector3f::Zero()); | |
| 
 | |
|   // compute the rotation duration to move the camera to the target | |
|   Frame aux1 = mCamera.frame(); | |
|   aux1.orientation = aux1.orientation.inverse(); | |
|   aux1.position = mCamera.viewMatrix().translation(); | |
|   float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9; | |
|   if (duration<0.1) duration = 0.1; | |
| 
 | |
|   // put the camera at that time step: | |
|   aux1 = aux0.lerp(duration/2,mInitFrame); | |
|   // and make it look at the target again | |
|   aux1.orientation = aux1.orientation.inverse(); | |
|   aux1.position = - (aux1.orientation * aux1.position); | |
|   mCamera.setFrame(aux1); | |
|   mCamera.setTarget(Vector3f::Zero()); | |
| 
 | |
|   // add this camera keyframe | |
|   aux1.orientation = aux1.orientation.inverse(); | |
|   aux1.position = mCamera.viewMatrix().translation(); | |
|   m_timeline[duration] = aux1; | |
| 
 | |
|   m_timeline[2] = mInitFrame; | |
|   m_alpha = 0; | |
|   animate(); | |
|   connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | |
|   m_timer.start(1000/30); | |
|   mAnimate = true; | |
| } | |
| 
 | |
| QWidget* RenderingWidget::createNavigationControlWidget() | |
| { | |
|   QWidget* panel = new QWidget(); | |
|   QVBoxLayout* layout = new QVBoxLayout(); | |
| 
 | |
|   { | |
|     QPushButton* but = new QPushButton("reset"); | |
|     but->setToolTip("move the camera to initial position (with animation)"); | |
|     layout->addWidget(but); | |
|     connect(but, SIGNAL(clicked()), this, SLOT(resetCamera())); | |
|   } | |
|   { | |
|     // navigation mode | |
|     QGroupBox* box = new QGroupBox("navigation mode"); | |
|     QVBoxLayout* boxLayout = new QVBoxLayout; | |
|     QButtonGroup* group = new QButtonGroup(panel); | |
|     QRadioButton* but; | |
|     but = new QRadioButton("turn around"); | |
|     but->setToolTip("look around an object"); | |
|     group->addButton(but, NavTurnAround); | |
|     boxLayout->addWidget(but); | |
|     but = new QRadioButton("fly"); | |
|     but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)"); | |
|     group->addButton(but, NavFly); | |
|     boxLayout->addWidget(but); | |
|     group->button(mNavMode)->setChecked(true); | |
|     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int))); | |
|     box->setLayout(boxLayout); | |
|     layout->addWidget(box); | |
|   } | |
|   { | |
|     // track ball, rotation mode | |
|     QGroupBox* box = new QGroupBox("rotation mode"); | |
|     QVBoxLayout* boxLayout = new QVBoxLayout; | |
|     QButtonGroup* group = new QButtonGroup(panel); | |
|     QRadioButton* but; | |
|     but = new QRadioButton("stable trackball"); | |
|     group->addButton(but, RotationStable); | |
|     boxLayout->addWidget(but); | |
|     but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere"); | |
|     but = new QRadioButton("standard rotation"); | |
|     group->addButton(but, RotationStandard); | |
|     boxLayout->addWidget(but); | |
|     but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes"); | |
|     group->button(mRotationMode)->setChecked(true); | |
|     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int))); | |
|     box->setLayout(boxLayout); | |
|     layout->addWidget(box); | |
|   } | |
|   { | |
|     // interpolation mode | |
|     QGroupBox* box = new QGroupBox("spherical interpolation"); | |
|     QVBoxLayout* boxLayout = new QVBoxLayout; | |
|     QButtonGroup* group = new QButtonGroup(panel); | |
|     QRadioButton* but; | |
|     but = new QRadioButton("quaternion slerp"); | |
|     group->addButton(but, LerpQuaternion); | |
|     boxLayout->addWidget(but); | |
|     but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations"); | |
|     but = new QRadioButton("euler angles"); | |
|     group->addButton(but, LerpEulerAngles); | |
|     boxLayout->addWidget(but); | |
|     but->setToolTip("use Euler angles to interpolate orientations"); | |
|     group->button(mNavMode)->setChecked(true); | |
|     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int))); | |
|     box->setLayout(boxLayout); | |
|     layout->addWidget(box); | |
|   } | |
|   layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding)); | |
|   panel->setLayout(layout); | |
|   return panel; | |
| } | |
| 
 | |
| QuaternionDemo::QuaternionDemo() | |
| { | |
|   mRenderingWidget = new RenderingWidget(); | |
|   setCentralWidget(mRenderingWidget); | |
| 
 | |
|   QDockWidget* panel = new QDockWidget("navigation", this); | |
|   panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea)); | |
|   addDockWidget(Qt::RightDockWidgetArea, panel); | |
|   panel->setWidget(mRenderingWidget->createNavigationControlWidget()); | |
| } | |
| 
 | |
| int main(int argc, char *argv[]) | |
| { | |
|   std::cout << "Navigation:\n"; | |
|   std::cout << "  left button:           rotate around the target\n"; | |
|   std::cout << "  middle button:         zoom\n"; | |
|   std::cout << "  left button + ctrl     quake rotate (rotate around camera position)\n"; | |
|   std::cout << "  middle button + ctrl   walk (progress along camera's z direction)\n"; | |
|   std::cout << "  left button:           pan (translate in the XY camera's plane)\n\n"; | |
|   std::cout << "R : move the camera to initial position\n"; | |
|   std::cout << "A : start/stop animation\n"; | |
|   std::cout << "C : clear the animation\n"; | |
|   std::cout << "G : add a key frame\n"; | |
| 
 | |
|   QApplication app(argc, argv); | |
|   QuaternionDemo demo; | |
|   demo.resize(600,500); | |
|   demo.show(); | |
|   return app.exec(); | |
| } | |
| 
 | |
| #include "quaternion_demo.moc" | |
| 
 |