You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							166 lines
						
					
					
						
							6.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							166 lines
						
					
					
						
							6.1 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #ifndef EIGEN_SCALING_H | |
| #define EIGEN_SCALING_H | |
|  | |
| namespace Eigen {  | |
| 
 | |
| /** \geometry_module \ingroup Geometry_Module | |
|   * | |
|   * \class Scaling | |
|   * | |
|   * \brief Represents a generic uniform scaling transformation | |
|   * | |
|   * \param _Scalar the scalar type, i.e., the type of the coefficients. | |
|   * | |
|   * This class represent a uniform scaling transformation. It is the return | |
|   * type of Scaling(Scalar), and most of the time this is the only way it | |
|   * is used. In particular, this class is not aimed to be used to store a scaling transformation, | |
|   * but rather to make easier the constructions and updates of Transform objects. | |
|   * | |
|   * To represent an axis aligned scaling, use the DiagonalMatrix class. | |
|   * | |
|   * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform | |
|   */ | |
| template<typename _Scalar> | |
| class UniformScaling | |
| { | |
| public: | |
|   /** the scalar type of the coefficients */ | |
|   typedef _Scalar Scalar; | |
| 
 | |
| protected: | |
| 
 | |
|   Scalar m_factor; | |
| 
 | |
| public: | |
| 
 | |
|   /** Default constructor without initialization. */ | |
|   UniformScaling() {} | |
|   /** Constructs and initialize a uniform scaling transformation */ | |
|   explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} | |
| 
 | |
|   inline const Scalar& factor() const { return m_factor; } | |
|   inline Scalar& factor() { return m_factor; } | |
| 
 | |
|   /** Concatenates two uniform scaling */ | |
|   inline UniformScaling operator* (const UniformScaling& other) const | |
|   { return UniformScaling(m_factor * other.factor()); } | |
| 
 | |
|   /** Concatenates a uniform scaling and a translation */ | |
|   template<int Dim> | |
|   inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; | |
| 
 | |
|   /** Concatenates a uniform scaling and an affine transformation */ | |
|   template<int Dim, int Mode, int Options> | |
|   inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const | |
|   { | |
|    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; | |
|    res.prescale(factor()); | |
|    return res; | |
| } | |
| 
 | |
|   /** Concatenates a uniform scaling and a linear transformation matrix */ | |
|   // TODO returns an expression | |
|   template<typename Derived> | |
|   inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const | |
|   { return other * m_factor; } | |
| 
 | |
|   template<typename Derived,int Dim> | |
|   inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const | |
|   { return r.toRotationMatrix() * m_factor; } | |
| 
 | |
|   /** \returns the inverse scaling */ | |
|   inline UniformScaling inverse() const | |
|   { return UniformScaling(Scalar(1)/m_factor); } | |
| 
 | |
|   /** \returns \c *this with scalar type casted to \a NewScalarType | |
|     * | |
|     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | |
|     * then this function smartly returns a const reference to \c *this. | |
|     */ | |
|   template<typename NewScalarType> | |
|   inline UniformScaling<NewScalarType> cast() const | |
|   { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } | |
| 
 | |
|   /** Copy constructor with scalar type conversion */ | |
|   template<typename OtherScalarType> | |
|   inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) | |
|   { m_factor = Scalar(other.factor()); } | |
| 
 | |
|   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | |
|     * determined by \a prec. | |
|     * | |
|     * \sa MatrixBase::isApprox() */ | |
|   bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | |
|   { return internal::isApprox(m_factor, other.factor(), prec); } | |
| 
 | |
| }; | |
| 
 | |
| /** Concatenates a linear transformation matrix and a uniform scaling */ | |
| // NOTE this operator is defiend in MatrixBase and not as a friend function | |
| // of UniformScaling to fix an internal crash of Intel's ICC | |
| template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType | |
| MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const | |
| { return derived() * s.factor(); } | |
| 
 | |
| /** Constructs a uniform scaling from scale factor \a s */ | |
| static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } | |
| /** Constructs a uniform scaling from scale factor \a s */ | |
| static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } | |
| /** Constructs a uniform scaling from scale factor \a s */ | |
| template<typename RealScalar> | |
| static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) | |
| { return UniformScaling<std::complex<RealScalar> >(s); } | |
| 
 | |
| /** Constructs a 2D axis aligned scaling */ | |
| template<typename Scalar> | |
| static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy) | |
| { return DiagonalMatrix<Scalar,2>(sx, sy); } | |
| /** Constructs a 3D axis aligned scaling */ | |
| template<typename Scalar> | |
| static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz) | |
| { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } | |
| 
 | |
| /** Constructs an axis aligned scaling expression from vector expression \a coeffs | |
|   * This is an alias for coeffs.asDiagonal() | |
|   */ | |
| template<typename Derived> | |
| static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) | |
| { return coeffs.asDiagonal(); } | |
| 
 | |
| /** \addtogroup Geometry_Module */ | |
| //@{ | |
| /** \deprecated */ | |
| typedef DiagonalMatrix<float, 2> AlignedScaling2f; | |
| /** \deprecated */ | |
| typedef DiagonalMatrix<double,2> AlignedScaling2d; | |
| /** \deprecated */ | |
| typedef DiagonalMatrix<float, 3> AlignedScaling3f; | |
| /** \deprecated */ | |
| typedef DiagonalMatrix<double,3> AlignedScaling3d; | |
| //@} | |
|  | |
| template<typename Scalar> | |
| template<int Dim> | |
| inline Transform<Scalar,Dim,Affine> | |
| UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const | |
| { | |
|   Transform<Scalar,Dim,Affine> res; | |
|   res.matrix().setZero(); | |
|   res.linear().diagonal().fill(factor()); | |
|   res.translation() = factor() * t.vector(); | |
|   res(Dim,Dim) = Scalar(1); | |
|   return res; | |
| } | |
| 
 | |
| } // end namespace Eigen | |
|  | |
| #endif // EIGEN_SCALING_H
 |