You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							270 lines
						
					
					
						
							9.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							270 lines
						
					
					
						
							9.6 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "common.h" | |
|  | |
| /**  ZHEMV  performs the matrix-vector  operation | |
|   * | |
|   *     y := alpha*A*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are n element vectors and | |
|   *  A is an n by n hermitian matrix. | |
|   */ | |
| int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | |
| { | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | |
|   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | |
| 
 | |
|   // check arguments | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)        info = 1; | |
|   else if(*n<0)                   info = 2; | |
|   else if(*lda<std::max(1,*n))    info = 5; | |
|   else if(*incx==0)               info = 7; | |
|   else if(*incy==0)               info = 10; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); | |
| 
 | |
|   if(*n==0) | |
|     return 1; | |
| 
 | |
|   Scalar* actual_x = get_compact_vector(x,*n,*incx); | |
|   Scalar* actual_y = get_compact_vector(y,*n,*incy); | |
| 
 | |
|   if(beta!=Scalar(1)) | |
|   { | |
|     if(beta==Scalar(0)) vector(actual_y, *n).setZero(); | |
|     else                vector(actual_y, *n) *= beta; | |
|   } | |
| 
 | |
|   if(alpha!=Scalar(0)) | |
|   { | |
|     // TODO performs a direct call to the underlying implementation function | |
|          if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n)); | |
|     else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n)); | |
|   } | |
| 
 | |
|   if(actual_x!=x) delete[] actual_x; | |
|   if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  ZHBMV  performs the matrix-vector  operation | |
|   * | |
|   *     y := alpha*A*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are n element vectors and | |
|   *  A is an n by n hermitian band matrix, with k super-diagonals. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, | |
| //                           RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  ZHPMV  performs the matrix-vector operation | |
|   * | |
|   *     y := alpha*A*x + beta*y, | |
|   * | |
|   *  where alpha and beta are scalars, x and y are n element vectors and | |
|   *  A is an n by n hermitian matrix, supplied in packed form. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  ZHPR    performs the hermitian rank 1 operation | |
|   * | |
|   *     A := alpha*x*conjg( x' ) + A, | |
|   * | |
|   *  where alpha is a real scalar, x is an n element vector and A is an | |
|   *  n by n hermitian matrix, supplied in packed form. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  ZHPR2  performs the hermitian rank 2 operation | |
|   * | |
|   *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | |
|   * | |
|   *  where alpha is a scalar, x and y are n element vectors and A is an | |
|   *  n by n hermitian matrix, supplied in packed form. | |
|   */ | |
| // int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap) | |
| // { | |
| //   return 1; | |
| // } | |
|  | |
| /**  ZHER   performs the hermitian rank 1 operation | |
|   * | |
|   *     A := alpha*x*conjg( x' ) + A, | |
|   * | |
|   *  where alpha is a real scalar, x is an n element vector and A is an | |
|   *  n by n hermitian matrix. | |
|   */ | |
| int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) | |
| { | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*lda<std::max(1,*n))                                        info = 7; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HER  ",&info,6); | |
| 
 | |
|   if(alpha==RealScalar(0)) | |
|     return 1; | |
| 
 | |
|   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | |
| 
 | |
|   // TODO perform direct calls to underlying implementation | |
| //   if(UPLO(*uplo)==LO)       matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha); | |
| //   else if(UPLO(*uplo)==UP)  matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha); | |
|  | |
|   if(UPLO(*uplo)==LO) | |
|     for(int j=0;j<*n;++j) | |
|       matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j); | |
|   else | |
|     for(int j=0;j<*n;++j) | |
|       matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1); | |
| 
 | |
|   matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  ZHER2  performs the hermitian rank 2 operation | |
|   * | |
|   *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | |
|   * | |
|   *  where alpha is a scalar, x and y are n element vectors and A is an n | |
|   *  by n hermitian matrix. | |
|   */ | |
| int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | |
| { | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|   if(UPLO(*uplo)==INVALID)                                            info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*incy==0)                                                   info = 7; | |
|   else if(*lda<std::max(1,*n))                                        info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); | |
| 
 | |
|   if(alpha==Scalar(0)) | |
|     return 1; | |
| 
 | |
|   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | |
|   Scalar* y_cpy = get_compact_vector(y, *n, *incy); | |
| 
 | |
|   // TODO perform direct calls to underlying implementation | |
|   if(UPLO(*uplo)==LO)       matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); | |
|   else if(UPLO(*uplo)==UP)  matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); | |
| 
 | |
|   matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
|   if(y_cpy!=y)  delete[] y_cpy; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  ZGERU  performs the rank 1 operation | |
|   * | |
|   *     A := alpha*x*y' + A, | |
|   * | |
|   *  where alpha is a scalar, x is an m element vector, y is an n element | |
|   *  vector and A is an m by n matrix. | |
|   */ | |
| int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | |
| { | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|        if(*m<0)                                                       info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*incy==0)                                                   info = 7; | |
|   else if(*lda<std::max(1,*m))                                        info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); | |
| 
 | |
|   if(alpha==Scalar(0)) | |
|     return 1; | |
| 
 | |
|   Scalar* x_cpy = get_compact_vector(x,*m,*incx); | |
|   Scalar* y_cpy = get_compact_vector(y,*n,*incy); | |
| 
 | |
|   // TODO perform direct calls to underlying implementation | |
|   matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose(); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
|   if(y_cpy!=y)  delete[] y_cpy; | |
| 
 | |
|   return 1; | |
| } | |
| 
 | |
| /**  ZGERC  performs the rank 1 operation | |
|   * | |
|   *     A := alpha*x*conjg( y' ) + A, | |
|   * | |
|   *  where alpha is a scalar, x is an m element vector, y is an n element | |
|   *  vector and A is an m by n matrix. | |
|   */ | |
| int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | |
| { | |
|   Scalar* x = reinterpret_cast<Scalar*>(px); | |
|   Scalar* y = reinterpret_cast<Scalar*>(py); | |
|   Scalar* a = reinterpret_cast<Scalar*>(pa); | |
|   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | |
| 
 | |
|   int info = 0; | |
|        if(*m<0)                                                       info = 1; | |
|   else if(*n<0)                                                       info = 2; | |
|   else if(*incx==0)                                                   info = 5; | |
|   else if(*incy==0)                                                   info = 7; | |
|   else if(*lda<std::max(1,*m))                                        info = 9; | |
|   if(info) | |
|     return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); | |
| 
 | |
|   if(alpha==Scalar(0)) | |
|     return 1; | |
| 
 | |
|   Scalar* x_cpy = get_compact_vector(x,*m,*incx); | |
|   Scalar* y_cpy = get_compact_vector(y,*n,*incy); | |
| 
 | |
|   // TODO perform direct calls to underlying implementation | |
|   matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint(); | |
| 
 | |
|   if(x_cpy!=x)  delete[] x_cpy; | |
|   if(y_cpy!=y)  delete[] y_cpy; | |
| 
 | |
|   return 1; | |
| }
 |