You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							529 lines
						
					
					
						
							33 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							529 lines
						
					
					
						
							33 KiB
						
					
					
				| #include "gtest/gtest.h" | |
| #include "storm-config.h" | |
|  | |
| #include "src/logic/Formulas.h" | |
| #include "src/utility/solver.h" | |
| #include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h" | |
| #include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h" | |
| #include "src/settings/SettingsManager.h" | |
| #include "src/parser/AutoParser.h" | |
|  | |
| TEST(SparseMdpPrctlModelCheckerTest, Dice) { | |
| 	std::shared_ptr<storm::models::sparse::Model<double>> abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew"); | |
|      | |
|     ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp); | |
|      | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> mdp = abstractModel->as<storm::models::sparse::Mdp<double>>(); | |
|      | |
| 	ASSERT_EQ(mdp->getNumberOfStates(), 169ull); | |
| 	ASSERT_EQ(mdp->getNumberOfTransitions(), 436ull); | |
|      | |
|     storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
|      | |
|     auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two"); | |
|     auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); | |
|     auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); | |
|      | |
|     std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.0277777612209320068, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
|     auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); | |
|      | |
|     result = checker.check(*maxProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.0277777612209320068, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
|     labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three"); | |
|     eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); | |
|     minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); | |
|      | |
|     result = checker.check(*minProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.0555555224418640136, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
|     maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); | |
|      | |
|     result = checker.check(*maxProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.0555555224418640136, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
|     labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("four"); | |
|     eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); | |
|     minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); | |
|      | |
|     result = checker.check(*minProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.083333283662796020508, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
|     maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); | |
|      | |
|     result = checker.check(*maxProbabilityOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(0.083333283662796020508, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
|     labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); | |
| 	auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); | |
|     auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); | |
|      | |
|     result = checker.check(*minRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult7 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(7.333329499, quantitativeResult7[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
|     auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); | |
|      | |
|     result = checker.check(*maxRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult8 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(7.333329499, quantitativeResult8[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
| 	abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", ""); | |
|      | |
|     ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp); | |
|      | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> stateRewardMdp = abstractModel->as<storm::models::sparse::Mdp<double>>(); | |
|      | |
|     storm::modelchecker::SparseMdpPrctlModelChecker<double> stateRewardModelChecker(*stateRewardMdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
|     labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); | |
|     reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); | |
|     minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); | |
| 
 | |
| 	result = stateRewardModelChecker.check(*minRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult9 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(7.333329499, quantitativeResult9[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
|     maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); | |
|      | |
| 	result = stateRewardModelChecker.check(*maxRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult10 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(7.333329499, quantitativeResult10[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
|      | |
| 	abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew"); | |
|      | |
|     ASSERT_EQ(abstractModel->getType(), storm::models::ModelType::Mdp); | |
|      | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> stateAndTransitionRewardMdp = abstractModel->as<storm::models::sparse::Mdp<double>>(); | |
|      | |
| 	storm::modelchecker::SparseMdpPrctlModelChecker<double> stateAndTransitionRewardModelChecker(*stateAndTransitionRewardMdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
|      | |
|     labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); | |
|     reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); | |
|     minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); | |
|      | |
|     result = stateAndTransitionRewardModelChecker.check(*minRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult11 = result->asExplicitQuantitativeCheckResult<double>(); | |
|      | |
| 	EXPECT_NEAR(14.666658998, quantitativeResult11[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
|     maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); | |
| 
 | |
|     result = stateAndTransitionRewardModelChecker.check(*maxRewardOperatorFormula); | |
|     storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult12 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(14.666658998, quantitativeResult12[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| } | |
| 
 | |
| TEST(SparseMdpPrctlModelCheckerTest, AsynchronousLeader) { | |
| 	std::shared_ptr<storm::models::sparse::Model<double>> abstractModel = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.tra", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.trans.rew"); | |
| 
 | |
|     ASSERT_EQ(storm::models::ModelType::Mdp, abstractModel->getType()); | |
| 
 | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> mdp = abstractModel->as<storm::models::sparse::Mdp<double>>(); | |
| 
 | |
| 	ASSERT_EQ(3172ull, mdp->getNumberOfStates()); | |
| 	ASSERT_EQ(7144ull, mdp->getNumberOfTransitions()); | |
| 
 | |
|     storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 	auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); | |
| 	auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); | |
| 	auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); | |
| 
 | |
| 	std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(1, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 	auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); | |
| 
 | |
| 	result = checker.check(*maxProbabilityOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(1, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 	labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); | |
| 	auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true); | |
| 	auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 25); | |
| 	minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula); | |
| 
 | |
| 	result = checker.check(*minProbabilityOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(0.0625, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 	maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula); | |
| 
 | |
| 	result = checker.check(*maxProbabilityOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(0.0625, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 	labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); | |
| 	auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); | |
| 	auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); | |
| 
 | |
| 	result = checker.check(*minRewardOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(4.285689611, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 	auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); | |
| 
 | |
| 	result = checker.check(*maxRewardOperatorFormula); | |
| 	storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 	EXPECT_NEAR(4.285689611, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| } | |
| 
 | |
| TEST(SparseMdpPrctlModelCheckerTest, LRA_SingleMec) { | |
| 	storm::storage::SparseMatrixBuilder<double> matrixBuilder; | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> mdp; | |
| 
 | |
| 	{ | |
| 		matrixBuilder = storm::storage::SparseMatrixBuilder<double>(2, 2, 2); | |
| 		matrixBuilder.addNextValue(0, 1, 1.); | |
| 		matrixBuilder.addNextValue(1, 0, 1.); | |
| 		storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build(); | |
| 
 | |
| 		storm::models::sparse::StateLabeling ap(2); | |
| 		ap.addLabel("a"); | |
| 		ap.addLabelToState("a", 1); | |
| 
 | |
| 		mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none)); | |
| 
 | |
| 		storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 		auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a"); | |
| 		auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 	} | |
| 	{ | |
| 		matrixBuilder = storm::storage::SparseMatrixBuilder<double>(2, 2, 4); | |
| 		matrixBuilder.addNextValue(0, 0, .5); | |
| 		matrixBuilder.addNextValue(0, 1, .5); | |
| 		matrixBuilder.addNextValue(1, 0, .5); | |
| 		matrixBuilder.addNextValue(1, 1, .5); | |
| 		storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build(); | |
| 
 | |
| 		storm::models::sparse::StateLabeling ap(2); | |
| 		ap.addLabel("a"); | |
| 		ap.addLabelToState("a", 1); | |
| 
 | |
| 		mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none)); | |
| 
 | |
| 		storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 		auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a"); | |
| 		auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 	} | |
| 
 | |
| 	{ | |
| 		matrixBuilder = storm::storage::SparseMatrixBuilder<double>(4, 3, 4, true, true, 3); | |
| 		matrixBuilder.newRowGroup(0); | |
| 		matrixBuilder.addNextValue(0, 1, 1); | |
| 		matrixBuilder.newRowGroup(1); | |
| 		matrixBuilder.addNextValue(1, 0, 1); | |
| 		matrixBuilder.addNextValue(2, 2, 1); | |
| 		matrixBuilder.newRowGroup(3); | |
| 		matrixBuilder.addNextValue(3, 0, 1); | |
| 		storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build(); | |
| 
 | |
| 		storm::models::sparse::StateLabeling ap(3); | |
| 		ap.addLabel("a"); | |
| 		ap.addLabelToState("a", 2); | |
| 		ap.addLabel("b"); | |
| 		ap.addLabelToState("b", 0); | |
| 		ap.addLabel("c"); | |
| 		ap.addLabelToState("c", 0); | |
| 		ap.addLabelToState("c", 2); | |
| 
 | |
| 		mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none)); | |
| 
 | |
| 		storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 		auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a"); | |
| 		auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("b"); | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.5, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.5, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.5, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1. / 3., quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("c"); | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(2. / 3., quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(2. / 3., quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(2. / 3., quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.5, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.5, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.5, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 	} | |
| } | |
| 
 | |
| TEST(SparseMdpPrctlModelCheckerTest, LRA) { | |
| 	storm::storage::SparseMatrixBuilder<double> matrixBuilder; | |
| 	std::shared_ptr<storm::models::sparse::Mdp<double>> mdp; | |
| 
 | |
| 	{ | |
| 		matrixBuilder = storm::storage::SparseMatrixBuilder<double>(4, 3, 4, true, true, 3); | |
| 		matrixBuilder.newRowGroup(0); | |
| 		matrixBuilder.addNextValue(0, 1, 1); | |
| 		matrixBuilder.newRowGroup(1); | |
| 		matrixBuilder.addNextValue(1, 1, 1); | |
| 		matrixBuilder.addNextValue(2, 2, 1); | |
| 		matrixBuilder.newRowGroup(3); | |
| 		matrixBuilder.addNextValue(3, 2, 1); | |
| 		storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build(); | |
| 
 | |
| 		storm::models::sparse::StateLabeling ap(3); | |
| 		ap.addLabel("a"); | |
| 		ap.addLabelToState("a", 0); | |
| 		ap.addLabel("b"); | |
| 		ap.addLabelToState("b", 1); | |
| 		ap.addLabel("c"); | |
| 		ap.addLabelToState("c", 2); | |
| 
 | |
| 		mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none)); | |
| 
 | |
| 		storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 		auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a"); | |
| 		auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.0, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("b"); | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult3 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(1.0, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1.0, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult4 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.0, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("c"); | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult5 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(1.0, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1.0, quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1.0, quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult6 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.0, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1.0, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 	} | |
| 	{ | |
| 		matrixBuilder = storm::storage::SparseMatrixBuilder<double>(22, 15, 28, true, true, 15); | |
| 		matrixBuilder.newRowGroup(0); | |
| 		matrixBuilder.addNextValue(0, 1, 1); | |
| 		matrixBuilder.newRowGroup(1); | |
| 		matrixBuilder.addNextValue(1, 0, 1); | |
| 		matrixBuilder.addNextValue(2, 2, 1); | |
| 		matrixBuilder.addNextValue(3, 4, 0.7); | |
| 		matrixBuilder.addNextValue(3, 6, 0.3); | |
| 		matrixBuilder.newRowGroup(4); | |
| 		matrixBuilder.addNextValue(4, 0, 1); | |
| 
 | |
| 		matrixBuilder.newRowGroup(5); | |
| 		matrixBuilder.addNextValue(5, 4, 1); | |
| 		matrixBuilder.addNextValue(6, 5, 0.8); | |
| 		matrixBuilder.addNextValue(6, 9, 0.2); | |
| 		matrixBuilder.newRowGroup(7); | |
| 		matrixBuilder.addNextValue(7, 3, 1); | |
| 		matrixBuilder.addNextValue(8, 5, 1); | |
| 		matrixBuilder.newRowGroup(9); | |
| 		matrixBuilder.addNextValue(9, 3, 1); | |
| 
 | |
| 		matrixBuilder.newRowGroup(10); | |
| 		matrixBuilder.addNextValue(10, 7, 1); | |
| 		matrixBuilder.newRowGroup(11); | |
| 		matrixBuilder.addNextValue(11, 6, 1); | |
| 		matrixBuilder.addNextValue(12, 8, 1); | |
| 		matrixBuilder.newRowGroup(13); | |
| 		matrixBuilder.addNextValue(13, 6, 1); | |
| 
 | |
| 		matrixBuilder.newRowGroup(14); | |
| 		matrixBuilder.addNextValue(14, 10, 1); | |
| 		matrixBuilder.newRowGroup(15); | |
| 		matrixBuilder.addNextValue(15, 9, 1); | |
| 		matrixBuilder.addNextValue(16, 11, 1); | |
| 		matrixBuilder.newRowGroup(17); | |
| 		matrixBuilder.addNextValue(17, 9, 1); | |
| 
 | |
| 		matrixBuilder.newRowGroup(18); | |
| 		matrixBuilder.addNextValue(18, 5, 0.4); | |
| 		matrixBuilder.addNextValue(18, 8, 0.3); | |
| 		matrixBuilder.addNextValue(18, 11, 0.3); | |
| 
 | |
| 		matrixBuilder.newRowGroup(19); | |
| 		matrixBuilder.addNextValue(19, 7, 0.7); | |
| 		matrixBuilder.addNextValue(19, 12, 0.3); | |
| 
 | |
| 		matrixBuilder.newRowGroup(20); | |
| 		matrixBuilder.addNextValue(20, 12, 0.1); | |
| 		matrixBuilder.addNextValue(20, 13, 0.9); | |
| 		matrixBuilder.addNextValue(21, 12, 1); | |
| 
 | |
| 		storm::storage::SparseMatrix<double> transitionMatrix = matrixBuilder.build(); | |
| 
 | |
| 		storm::models::sparse::StateLabeling ap(15); | |
| 		ap.addLabel("a"); | |
| 		ap.addLabelToState("a", 1); | |
| 		ap.addLabelToState("a", 4); | |
| 		ap.addLabelToState("a", 5); | |
| 		ap.addLabelToState("a", 7); | |
| 		ap.addLabelToState("a", 11); | |
| 		ap.addLabelToState("a", 13); | |
| 		ap.addLabelToState("a", 14); | |
| 
 | |
| 		mdp.reset(new storm::models::sparse::Mdp<double>(transitionMatrix, ap, boost::none, boost::none, boost::none)); | |
| 
 | |
| 		storm::modelchecker::SparseMdpPrctlModelChecker<double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); | |
| 
 | |
| 		auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("a"); | |
| 		auto lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Maximize, labelFormula); | |
| 
 | |
| 		std::unique_ptr<storm::modelchecker::CheckResult> result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult1 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(37./60., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(2./3., quantitativeResult1[3], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.5, quantitativeResult1[6], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1./3., quantitativeResult1[9], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(31./60., quantitativeResult1[12], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(101./200., quantitativeResult1[13], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(31./60., quantitativeResult1[14], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 
 | |
| 		lraFormula = std::make_shared<storm::logic::LongRunAverageOperatorFormula>(storm::logic::OptimalityType::Minimize, labelFormula); | |
| 
 | |
| 		result = std::move(checker.check(*lraFormula)); | |
| 		storm::modelchecker::ExplicitQuantitativeCheckResult<double>& quantitativeResult2 = result->asExplicitQuantitativeCheckResult<double>(); | |
| 
 | |
| 		EXPECT_NEAR(0.3 / 3., quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[3], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(1./3., quantitativeResult2[6], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.0, quantitativeResult2[9], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.3 / 3., quantitativeResult2[12], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(.79 / 3., quantitativeResult2[13], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 		EXPECT_NEAR(0.3 / 3., quantitativeResult2[14], storm::settings::nativeEquationSolverSettings().getPrecision()); | |
| 	} | |
| }
 |