1244 lines
92 KiB

#include "src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h"
#include <algorithm>
#include <random>
#include <chrono>
#include "src/adapters/CarlAdapter.h"
#include "src/settings/modules/SparseDtmcEliminationModelCheckerSettings.h"
#include "src/settings/modules/MarkovChainSettings.h"
#include "src/settings/SettingsManager.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/logic/FragmentSpecification.h"
#include "src/utility/graph.h"
#include "src/utility/vector.h"
#include "src/utility/macros.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidSettingsException.h"
#include "src/exceptions/IllegalArgumentException.h"
#include "src/solver/stateelimination/LongRunAverageEliminator.h"
#include "src/solver/stateelimination/ConditionalEliminator.h"
#include "src/solver/stateelimination/PrioritizedEliminator.h"
namespace storm {
namespace modelchecker {
template<typename ValueType>
uint_fast64_t estimateComplexity(ValueType const& value) {
return 1;
}
#ifdef STORM_HAVE_CARL
template<>
uint_fast64_t estimateComplexity(storm::RationalFunction const& value) {
if (storm::utility::isConstant(value)) {
return 1;
}
if (value.denominator().isConstant()) {
return value.nominator().complexity();
} else {
return value.denominator().complexity() * value.nominator().complexity();
}
}
#endif
bool eliminationOrderNeedsDistances(storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder const& order) {
return order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Forward ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::ForwardReversed ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Backward ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::BackwardReversed;
}
bool eliminationOrderNeedsForwardDistances(storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder const& order) {
return order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Forward ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::ForwardReversed;
}
bool eliminationOrderNeedsReversedDistances(storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder const& order) {
return order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::ForwardReversed ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::BackwardReversed;
}
bool eliminationOrderIsPenaltyBased(storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder const& order) {
return order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::StaticPenalty ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::DynamicPenalty ||
order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::RegularExpression;
}
bool eliminationOrderIsStatic(storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder const& order) {
return eliminationOrderNeedsDistances(order) || order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::StaticPenalty;
}
template<typename SparseDtmcModelType>
SparseDtmcEliminationModelChecker<SparseDtmcModelType>::SparseDtmcEliminationModelChecker(storm::models::sparse::Dtmc<ValueType> const& model) : SparsePropositionalModelChecker<SparseDtmcModelType>(model) {
// Intentionally left empty.
}
template<typename SparseDtmcModelType>
bool SparseDtmcEliminationModelChecker<SparseDtmcModelType>::canHandle(CheckTask<storm::logic::Formula> const& checkTask) const {
storm::logic::Formula const& formula = checkTask.getFormula();
storm::logic::FragmentSpecification fragment = storm::logic::prctl().setCumulativeRewardFormulasAllowed(false).setInstantaneousFormulasAllowed(false);
fragment.setNestedOperatorsAllowed(false).setLongRunAverageProbabilitiesAllowed(true).setConditionalProbabilityFormulasAllowed(true).setOnlyEventuallyFormuluasInConditionalFormulasAllowed(true);
return formula.isInFragment(fragment);
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunAverageProbabilities(CheckTask<storm::logic::StateFormula> const& checkTask) {
storm::logic::StateFormula const& stateFormula = checkTask.getFormula();
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
storm::storage::BitVector const& psiStates = subResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix();
uint_fast64_t numberOfStates = transitionMatrix.getRowCount();
if (psiStates.empty()) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>())));
}
if (psiStates.full()) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::vector<ValueType>(numberOfStates, storm::utility::one<ValueType>())));
}
storm::storage::BitVector const& initialStates = this->getModel().getInitialStates();
STORM_LOG_THROW(initialStates.getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::IllegalArgumentException, "Cannot compute long-run probabilities for all states.");
storm::storage::SparseMatrix<ValueType> backwardTransitions = this->getModel().getBackwardTransitions();
storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowCount(), true), psiStates);
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Determine whether we need to perform some further computation.
bool furtherComputationNeeded = true;
if (checkTask.isOnlyInitialStatesRelevantSet() && initialStates.isDisjointFrom(maybeStates)) {
STORM_LOG_DEBUG("The long-run probability for all initial states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
if (maybeStates.empty()) {
STORM_LOG_DEBUG("The long-run probability for all states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
if (furtherComputationNeeded) {
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(transitionMatrix, initialStates, storm::storage::BitVector(numberOfStates, true), storm::storage::BitVector(numberOfStates, false));
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
}
std::vector<ValueType> stateValues(maybeStates.size(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(stateValues, psiStates, storm::utility::one<ValueType>());
result = computeLongRunValues(transitionMatrix, backwardTransitions, initialStates, maybeStates, checkTask.isOnlyInitialStatesRelevantSet(), stateValues);
}
// Construct check result based on whether we have computed values for all states or just the initial states.
std::unique_ptr<CheckResult> checkResult(new ExplicitQuantitativeCheckResult<ValueType>(result));
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// If we computed the results for the initial states only, we need to filter the result to only
// communicate these results.
checkResult->filter(ExplicitQualitativeCheckResult(initialStates));
}
return checkResult;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunAverageRewards(storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula> const& checkTask) {
// Do some sanity checks to establish some required properties.
RewardModelType const& rewardModel = this->getModel().getRewardModel(checkTask.isRewardModelSet() ? checkTask.getRewardModel() : "");
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::IllegalArgumentException, "Input model does not have a reward model.");
storm::storage::BitVector const& initialStates = this->getModel().getInitialStates();
STORM_LOG_THROW(initialStates.getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::IllegalArgumentException, "Cannot compute long-run probabilities for all states.");
storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix();
uint_fast64_t numberOfStates = transitionMatrix.getRowCount();
// Get the state-reward values from the reward model.
std::vector<ValueType> stateRewardValues = rewardModel.getTotalRewardVector(this->getModel().getTransitionMatrix());
storm::storage::BitVector maybeStates(stateRewardValues.size());
uint_fast64_t index = 0;
for (auto const& value : stateRewardValues) {
if (value != storm::utility::zero<ValueType>()) {
maybeStates.set(index, true);
}
++index;
}
storm::storage::SparseMatrix<ValueType> backwardTransitions = this->getModel().getBackwardTransitions();
storm::storage::BitVector allStates(numberOfStates, true);
maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, allStates, maybeStates);
std::vector<ValueType> result(numberOfStates, storm::utility::zero<ValueType>());
// Determine whether we need to perform some further computation.
bool furtherComputationNeeded = true;
if (checkTask.isOnlyInitialStatesRelevantSet() && initialStates.isDisjointFrom(maybeStates)) {
furtherComputationNeeded = false;
}
if (furtherComputationNeeded) {
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(transitionMatrix, initialStates, storm::storage::BitVector(numberOfStates, true), storm::storage::BitVector(numberOfStates, false));
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
}
result = computeLongRunValues(transitionMatrix, backwardTransitions, initialStates, maybeStates, checkTask.isOnlyInitialStatesRelevantSet(), stateRewardValues);
}
// Construct check result based on whether we have computed values for all states or just the initial states.
std::unique_ptr<CheckResult> checkResult(new ExplicitQuantitativeCheckResult<ValueType>(result));
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// If we computed the results for the initial states only, we need to filter the result to only
// communicate these results.
checkResult->filter(ExplicitQualitativeCheckResult(initialStates));
}
return checkResult;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& maybeStates, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& stateValues) {
std::chrono::high_resolution_clock::time_point totalTimeStart = std::chrono::high_resolution_clock::now();
// Start by decomposing the DTMC into its BSCCs.
std::chrono::high_resolution_clock::time_point sccDecompositionStart = std::chrono::high_resolution_clock::now();
storm::storage::StronglyConnectedComponentDecomposition<ValueType> bsccDecomposition(transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowCount(), true), false, true);
auto sccDecompositionEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point conversionStart = std::chrono::high_resolution_clock::now();
// Then, we convert the reduced matrix to a more flexible format to be able to perform state elimination more easily.
storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(transitionMatrix);
flexibleMatrix.createSubmatrix(maybeStates, maybeStates);
storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(backwardTransitions);
flexibleBackwardTransitions.createSubmatrix(maybeStates, maybeStates);
auto conversionEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point modelCheckingStart = std::chrono::high_resolution_clock::now();
storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder order = storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder();
boost::optional<std::vector<uint_fast64_t>> distanceBasedPriorities;
if (eliminationOrderNeedsDistances(order)) {
distanceBasedPriorities = getDistanceBasedPriorities(transitionMatrix, backwardTransitions, initialStates, stateValues,
eliminationOrderNeedsForwardDistances(order), eliminationOrderNeedsReversedDistances(order));
}
uint_fast64_t numberOfStates = transitionMatrix.getRowCount();
storm::storage::BitVector regularStatesInBsccs(numberOfStates);
storm::storage::BitVector relevantBsccs(bsccDecomposition.size());
storm::storage::BitVector bsccRepresentativesAsBitVector(numberOfStates);
std::vector<storm::storage::sparse::state_type> bsccRepresentatives;
uint_fast64_t currentIndex = 0;
for (auto const& bscc : bsccDecomposition) {
// Since all states in an SCC can reach all other states, we only need to check whether an arbitrary
// state is a maybe state.
if (maybeStates.get(*bscc.cbegin())) {
relevantBsccs.set(currentIndex);
bsccRepresentatives.push_back(*bscc.cbegin());
bsccRepresentativesAsBitVector.set(*bscc.cbegin(), true);
for (auto const& state : bscc) {
regularStatesInBsccs.set(state, true);
}
}
++currentIndex;
}
regularStatesInBsccs &= ~bsccRepresentativesAsBitVector;
// Compute the average time to stay in each state for all states in BSCCs.
std::vector<ValueType> averageTimeInStates(stateValues.size(), storm::utility::one<ValueType>());
// First, we eliminate all states in BSCCs (except for the representative states).
std::shared_ptr<StatePriorityQueue<ValueType>> priorityQueue = createStatePriorityQueue(distanceBasedPriorities, flexibleMatrix, flexibleBackwardTransitions, stateValues, regularStatesInBsccs);
storm::solver::stateelimination::LongRunAverageEliminator<SparseDtmcModelType> stateEliminator(flexibleMatrix, flexibleBackwardTransitions, priorityQueue, stateValues, averageTimeInStates);
while (priorityQueue->hasNextState()) {
storm::storage::sparse::state_type state = priorityQueue->popNextState();
stateEliminator.eliminateState(state, true);
STORM_LOG_ASSERT(checkConsistent(flexibleMatrix, flexibleBackwardTransitions), "The forward and backward transition matrices became inconsistent.");
}
// Now, we set the values of all states in BSCCs to that of the representative value (and clear the
// transitions of the representative states while doing so).
auto representativeIt = bsccRepresentatives.begin();
for (auto sccIndex : relevantBsccs) {
// We only need to set the values for all states of the BSCC if we are not computing the values for the
// initial states only.
ValueType bsccValue = stateValues[*representativeIt] / averageTimeInStates[*representativeIt];
auto const& bscc = bsccDecomposition[sccIndex];
if (!computeResultsForInitialStatesOnly) {
for (auto const& state : bscc) {
stateValues[state] = bsccValue;
}
} else {
for (auto const& state : bscc) {
stateValues[state] = storm::utility::zero<ValueType>();
}
stateValues[*representativeIt] = bsccValue;
}
FlexibleRowType& representativeForwardRow = flexibleMatrix.getRow(*representativeIt);
representativeForwardRow.clear();
representativeForwardRow.shrink_to_fit();
FlexibleRowType& representativeBackwardRow = flexibleBackwardTransitions.getRow(*representativeIt);
auto it = representativeBackwardRow.begin(), ite = representativeBackwardRow.end();
for (; it != ite; ++it) {
if (it->getColumn() == *representativeIt) {
break;
}
}
representativeBackwardRow.erase(it);
++representativeIt;
}
// If there are states remaining that are not in BSCCs, we need to eliminate them now.
storm::storage::BitVector remainingStates = maybeStates & ~regularStatesInBsccs;
// Set the value initial value of all states not in a BSCC to zero, because a) any previous value would
// incorrectly influence the result and b) the value have been erroneously changed for the predecessors of
// BSCCs by the previous state elimination.
for (auto state : remainingStates) {
if (!bsccRepresentativesAsBitVector.get(state)) {
stateValues[state] = storm::utility::zero<ValueType>();
}
}
// We only need to eliminate the remaining states if there was some BSCC that has a non-zero value, i.e.
// that consists of maybe states.
if (!relevantBsccs.empty()) {
performOrdinaryStateElimination(flexibleMatrix, flexibleBackwardTransitions, remainingStates, initialStates, computeResultsForInitialStatesOnly, stateValues, distanceBasedPriorities);
}
std::chrono::high_resolution_clock::time_point modelCheckingEnd = std::chrono::high_resolution_clock::now();
std::chrono::high_resolution_clock::time_point totalTimeEnd = std::chrono::high_resolution_clock::now();
if (storm::settings::getModule<storm::settings::modules::MarkovChainSettings>().isShowStatisticsSet()) {
std::chrono::high_resolution_clock::duration sccDecompositionTime = sccDecompositionEnd - sccDecompositionStart;
std::chrono::milliseconds sccDecompositionTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(sccDecompositionTime);
std::chrono::high_resolution_clock::duration conversionTime = conversionEnd - conversionStart;
std::chrono::milliseconds conversionTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(conversionTime);
std::chrono::high_resolution_clock::duration modelCheckingTime = modelCheckingEnd - modelCheckingStart;
std::chrono::milliseconds modelCheckingTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(modelCheckingTime);
std::chrono::high_resolution_clock::duration totalTime = totalTimeEnd - totalTimeStart;
std::chrono::milliseconds totalTimeInMilliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(totalTime);
STORM_PRINT_AND_LOG(std::endl);
STORM_PRINT_AND_LOG("Time breakdown:" << std::endl);
STORM_PRINT_AND_LOG(" * time for SCC decomposition: " << sccDecompositionTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(" * time for conversion: " << conversionTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG(" * time for checking: " << modelCheckingTimeInMilliseconds.count() << "ms" << std::endl);
STORM_PRINT_AND_LOG("------------------------------------------" << std::endl);
STORM_PRINT_AND_LOG(" * total time: " << totalTimeInMilliseconds.count() << "ms" << std::endl);
}
// Now, we return the value for the only initial state.
STORM_LOG_DEBUG("Simplifying and returning result.");
for (auto& value : stateValues) {
value = storm::utility::simplify(value);
}
return stateValues;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeBoundedUntilProbabilities(CheckTask<storm::logic::BoundedUntilFormula> const& checkTask) {
storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula();
// Retrieve the appropriate bitvectors by model checking the subformulas.
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
storm::storage::BitVector const& phiStates = leftResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector const& psiStates = rightResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Start by determining the states that have a non-zero probability of reaching the target states within the
// time bound.
storm::storage::BitVector statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(this->getModel().getBackwardTransitions(), phiStates, psiStates, true, pathFormula.getDiscreteTimeBound());
statesWithProbabilityGreater0 &= ~psiStates;
// Determine whether we need to perform some further computation.
bool furtherComputationNeeded = true;
if (checkTask.isOnlyInitialStatesRelevantSet() && this->getModel().getInitialStates().isDisjointFrom(statesWithProbabilityGreater0)) {
STORM_LOG_DEBUG("The probability for all initial states was found in a preprocessing step.");
furtherComputationNeeded = false;
} else if (statesWithProbabilityGreater0.empty()) {
STORM_LOG_DEBUG("The probability for all states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix();
storm::storage::BitVector const& initialStates = this->getModel().getInitialStates();
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
if (furtherComputationNeeded) {
uint_fast64_t timeBound = pathFormula.getDiscreteTimeBound();
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(transitionMatrix, initialStates, phiStates, psiStates, true, timeBound);
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
statesWithProbabilityGreater0 &= reachableStates;
}
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, statesWithProbabilityGreater0, statesWithProbabilityGreater0, true);
std::vector<std::size_t> distancesFromInitialStates;
storm::storage::BitVector relevantStates;
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// Determine the set of initial states of the sub-model.
storm::storage::BitVector subInitialStates = this->getModel().getInitialStates() % statesWithProbabilityGreater0;
// Precompute the distances of the relevant states to the initial states.
distancesFromInitialStates = storm::utility::graph::getDistances(submatrix, subInitialStates, statesWithProbabilityGreater0);
// Set all states to be relevant for later use.
relevantStates = storm::storage::BitVector(statesWithProbabilityGreater0.getNumberOfSetBits(), true);
}
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(b);
std::vector<ValueType> tmp(subresult.size());
// Subtract one from the time bound because initializing the sub-result to b already accounts for one step.
--timeBound;
// Perform matrix-vector multiplications until the time-bound is met.
for (uint_fast64_t timeStep = 0; timeStep < timeBound; ++timeStep) {
submatrix.multiplyWithVector(subresult, tmp);
storm::utility::vector::addVectors(tmp, b, subresult);
// If we are computing the results for the initial states only, we can use the minimal distance from
// each state to the initial states to determine whether we still need to consider the values for
// these states. If not, we can null-out all their probabilities.
if (checkTask.isOnlyInitialStatesRelevantSet()) {
for (auto state : relevantStates) {
if (distancesFromInitialStates[state] > (timeBound - timeStep)) {
for (auto& element : submatrix.getRow(state)) {
element.setValue(storm::utility::zero<ValueType>());
}
b[state] = storm::utility::zero<ValueType>();
relevantStates.set(state, false);
}
}
}
}
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, subresult);
}
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
// Construct check result based on whether we have computed values for all states or just the initial states.
std::unique_ptr<CheckResult> checkResult(new ExplicitQuantitativeCheckResult<ValueType>(result));
if (checkTask.isOnlyInitialStatesRelevantSet()) {
// If we computed the results for the initial (and prob 0 and prob1) states only, we need to filter the
// result to only communicate these results.
checkResult->filter(ExplicitQualitativeCheckResult(this->getModel().getInitialStates() | psiStates));
}
return checkResult;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeUntilProbabilities(CheckTask<storm::logic::UntilFormula> const& checkTask) {
storm::logic::UntilFormula const& pathFormula = checkTask.getFormula();
// Retrieve the appropriate bitvectors by model checking the subformulas.
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
storm::storage::BitVector const& phiStates = leftResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector const& psiStates = rightResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
std::vector<ValueType> result = computeUntilProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getInitialStates(), phiStates, psiStates, checkTask.isOnlyInitialStatesRelevantSet());
// Construct check result.
std::unique_ptr<CheckResult> checkResult(new ExplicitQuantitativeCheckResult<ValueType>(result));
return checkResult;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcModelType::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool computeForInitialStatesOnly) {
// Then, compute the subset of states that has a probability of 0 or 1, respectively.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = statesWithProbability01.first;
storm::storage::BitVector statesWithProbability1 = statesWithProbability01.second;
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
// Determine whether we need to perform some further computation.
bool furtherComputationNeeded = true;
if (computeForInitialStatesOnly && initialStates.isDisjointFrom(maybeStates)) {
STORM_LOG_DEBUG("The probability for all initial states was found in a preprocessing step.");
furtherComputationNeeded = false;
} else if (maybeStates.empty()) {
STORM_LOG_DEBUG("The probability for all states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
std::vector<ValueType> result(maybeStates.size());
if (furtherComputationNeeded) {
// If we compute the results for the initial states only, we can cut off all maybe state that are not
// reachable from them.
if (computeForInitialStatesOnly) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(probabilityMatrix, initialStates, maybeStates, statesWithProbability1);
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
}
// Create a vector for the probabilities to go to a state with probability 1 in one step.
std::vector<ValueType> oneStepProbabilities = probabilityMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Determine the set of initial states of the sub-model.
storm::storage::BitVector newInitialStates = initialStates % maybeStates;
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = probabilityMatrix.getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
std::vector<ValueType> subresult = computeReachabilityValues(submatrix, oneStepProbabilities, submatrixTransposed, newInitialStates, computeForInitialStatesOnly, phiStates, psiStates, oneStepProbabilities);
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, subresult);
}
// Construct full result.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
if (computeForInitialStatesOnly) {
// If we computed the results for the initial (and prob 0 and prob1) states only, we need to filter the
// result to only communicate these results.
result = storm::utility::vector::filterVector(result, ~maybeStates | initialStates);
}
return result;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeReachabilityRewards(storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::EventuallyFormula> const& checkTask) {
storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula();
// Retrieve the appropriate bitvectors by model checking the subformulas.
std::unique_ptr<CheckResult> subResultPointer = this->check(eventuallyFormula.getSubformula());
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true);
storm::storage::BitVector const& targetStates = subResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
// Do some sanity checks to establish some required properties.
RewardModelType const& rewardModel = this->getModel().getRewardModel(checkTask.isRewardModelSet() ? checkTask.getRewardModel() : "");
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::IllegalArgumentException, "Input model does not have a reward model.");
std::vector<ValueType> result = computeReachabilityRewards(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getInitialStates(), targetStates,
[&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) {
return rewardModel.getTotalRewardVector(numberOfRows, transitionMatrix, maybeStates);
},
checkTask.isOnlyInitialStatesRelevantSet());
// Construct check result.
std::unique_ptr<CheckResult> checkResult(new ExplicitQuantitativeCheckResult<ValueType>(result));
return checkResult;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcModelType::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& targetStates, std::vector<ValueType>& stateRewardValues, bool computeForInitialStatesOnly) {
return computeReachabilityRewards(probabilityMatrix, backwardTransitions, initialStates, targetStates,
[&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) {
std::vector<ValueType> result(numberOfRows);
storm::utility::vector::selectVectorValues(result, maybeStates, stateRewardValues);
return result;
},
computeForInitialStatesOnly);
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcModelType::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& targetStates, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, bool computeForInitialStatesOnly) {
uint_fast64_t numberOfStates = probabilityMatrix.getRowCount();
// Compute the subset of states that has a reachability reward less than infinity.
storm::storage::BitVector trueStates(numberOfStates, true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
// Determine whether we need to perform some further computation.
bool furtherComputationNeeded = true;
if (computeForInitialStatesOnly) {
if (initialStates.isSubsetOf(infinityStates)) {
STORM_LOG_DEBUG("The reward of all initial states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
if (initialStates.isSubsetOf(targetStates)) {
STORM_LOG_DEBUG("The reward of all initial states was found in a preprocessing step.");
furtherComputationNeeded = false;
}
}
std::vector<ValueType> result(maybeStates.size());
if (furtherComputationNeeded) {
// If we compute the results for the initial states only, we can cut off all maybe state that are not
// reachable from them.
if (computeForInitialStatesOnly) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(probabilityMatrix, initialStates, maybeStates, targetStates);
// Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state).
maybeStates &= reachableStates;
}
// Determine the set of initial states of the sub-model.
storm::storage::BitVector newInitialStates = initialStates % maybeStates;
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = probabilityMatrix.getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
// Project the state reward vector to all maybe-states.
std::vector<ValueType> stateRewardValues = totalStateRewardVectorGetter(submatrix.getRowCount(), probabilityMatrix, maybeStates);
std::vector<ValueType> subresult = computeReachabilityValues(submatrix, stateRewardValues, submatrixTransposed, newInitialStates, computeForInitialStatesOnly, trueStates, targetStates, probabilityMatrix.getConstrainedRowSumVector(maybeStates, targetStates));
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, subresult);
}
// Construct full result.
storm::utility::vector::setVectorValues<ValueType>(result, infinityStates, storm::utility::infinity<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, targetStates, storm::utility::zero<ValueType>());
if (computeForInitialStatesOnly) {
// If we computed the results for the initial (and inf) states only, we need to filter the result to
// only communicate these results.
result = storm::utility::vector::filterVector(result, ~maybeStates | initialStates);
}
return result;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeConditionalProbabilities(CheckTask<storm::logic::ConditionalFormula> const& checkTask) {
storm::logic::ConditionalFormula const& conditionalFormula = checkTask.getFormula();
// Retrieve the appropriate bitvectors by model checking the subformulas.
STORM_LOG_THROW(conditionalFormula.getSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Expected 'eventually' formula.");
STORM_LOG_THROW(conditionalFormula.getConditionFormula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Expected 'eventually' formula.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(conditionalFormula.getSubformula().asEventuallyFormula().getSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(conditionalFormula.getConditionFormula().asEventuallyFormula().getSubformula());
storm::storage::BitVector phiStates = leftResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector psiStates = rightResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true);
// Do some sanity checks to establish some required properties.
// STORM_LOG_WARN_COND(storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::State, "The chosen elimination method is not available for computing conditional probabilities. Falling back to regular state elimination.");
STORM_LOG_THROW(this->getModel().getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::IllegalArgumentException, "Input model is required to have exactly one initial state.");
STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::IllegalArgumentException, "Cannot compute conditional probabilities for all states.");
storm::storage::sparse::state_type initialState = *this->getModel().getInitialStates().begin();
storm::storage::SparseMatrix<ValueType> backwardTransitions = this->getModel().getBackwardTransitions();
// Compute the 'true' psi states, i.e. those psi states that can be reached without passing through another psi state first.
psiStates = storm::utility::graph::getReachableStates(this->getModel().getTransitionMatrix(), this->getModel().getInitialStates(), trueStates, psiStates) & psiStates;
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, trueStates, psiStates);
storm::storage::BitVector statesWithProbabilityGreater0 = ~statesWithProbability01.first;
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
STORM_LOG_THROW(this->getModel().getInitialStates().isSubsetOf(statesWithProbabilityGreater0), storm::exceptions::InvalidPropertyException, "The condition of the conditional probability has zero probability.");
// If the initial state is known to have probability 1 of satisfying the condition, we can apply regular model checking.
if (this->getModel().getInitialStates().isSubsetOf(statesWithProbability1)) {
STORM_LOG_INFO("The condition holds with probability 1, so the regular reachability probability is computed.");
std::shared_ptr<storm::logic::BooleanLiteralFormula> trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true);
std::shared_ptr<storm::logic::UntilFormula> untilFormula = std::make_shared<storm::logic::UntilFormula>(trueFormula, conditionalFormula.getSubformula().asSharedPointer());
return this->computeUntilProbabilities(*untilFormula);
}
// From now on, we know the condition does not have a trivial probability in the initial state.
// Compute the states that can be reached on a path that has a psi state in it.
storm::storage::BitVector statesWithPsiPredecessor = storm::utility::graph::performProbGreater0(this->getModel().getTransitionMatrix(), trueStates, psiStates);
storm::storage::BitVector statesReachingPhi = storm::utility::graph::performProbGreater0(backwardTransitions, trueStates, phiStates);
// The set of states we need to consider are those that have a non-zero probability to satisfy the condition or are on some path that has a psi state in it.
storm::storage::BitVector maybeStates = statesWithProbabilityGreater0 | (statesWithPsiPredecessor & statesReachingPhi);
// Determine the set of initial states of the sub-DTMC.
storm::storage::BitVector newInitialStates = this->getModel().getInitialStates() % maybeStates;
// Create a dummy vector for the one-step probabilities.
std::vector<ValueType> oneStepProbabilities(maybeStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
// We then build the submatrix that only has the transitions of the maybe states.
storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(false, maybeStates, maybeStates);
storm::storage::SparseMatrix<ValueType> submatrixTransposed = submatrix.transpose();
// The states we want to eliminate are those that are tagged with "maybe" but are not a phi or psi state.
phiStates = phiStates % maybeStates;
// If there are no phi states in the reduced model, the conditional probability is trivially zero.
if (phiStates.empty()) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, storm::utility::zero<ValueType>()));
}
psiStates = psiStates % maybeStates;
// Keep only the states that we do not eliminate in the maybe states.
maybeStates = phiStates | psiStates;
storm::storage::BitVector statesToEliminate = ~maybeStates & ~newInitialStates;
// Before starting the model checking process, we assign priorities to states so we can use them to
// impose ordering constraints later.
boost::optional<std::vector<uint_fast64_t>> distanceBasedPriorities;
storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder order = storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder();
if (eliminationOrderNeedsDistances(order)) {
distanceBasedPriorities = getDistanceBasedPriorities(submatrix, submatrixTransposed, newInitialStates, oneStepProbabilities,
eliminationOrderNeedsForwardDistances(order),
eliminationOrderNeedsReversedDistances(order));
}
storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(submatrix);
storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(submatrixTransposed, true);
std::shared_ptr<StatePriorityQueue<ValueType>> statePriorities = createStatePriorityQueue(distanceBasedPriorities, flexibleMatrix, flexibleBackwardTransitions, oneStepProbabilities, statesToEliminate);
STORM_LOG_INFO("Computing conditional probilities." << std::endl);
uint_fast64_t numberOfStatesToEliminate = statePriorities->size();
STORM_LOG_INFO("Eliminating " << numberOfStatesToEliminate << " states using the state elimination technique." << std::endl);
performPrioritizedStateElimination(statePriorities, flexibleMatrix, flexibleBackwardTransitions, oneStepProbabilities, this->getModel().getInitialStates(), true);
storm::solver::stateelimination::ConditionalEliminator<SparseDtmcModelType> stateEliminator = storm::solver::stateelimination::ConditionalEliminator<SparseDtmcModelType>(flexibleMatrix, flexibleBackwardTransitions, oneStepProbabilities, phiStates, psiStates);
// Eliminate the transitions going into the initial state (if there are any).
if (!flexibleBackwardTransitions.getRow(*newInitialStates.begin()).empty()) {
stateEliminator.eliminateState(*newInitialStates.begin(), false);
}
// Now we need to basically eliminate all chains of not-psi states after phi states and chains of not-phi
// states after psi states.
for (auto const& trans1 : flexibleMatrix.getRow(*newInitialStates.begin())) {
auto initialStateSuccessor = trans1.getColumn();
STORM_LOG_TRACE("Exploring successor " << initialStateSuccessor << " of the initial state.");
if (phiStates.get(initialStateSuccessor)) {
STORM_LOG_TRACE("Is a phi state.");
// If the state is both a phi and a psi state, we do not need to eliminate chains.
if (psiStates.get(initialStateSuccessor)) {
continue;
}
// At this point, we know that the state satisfies phi and not psi.
// This means, we must compute the probability to reach psi states, which in turn means that we need
// to eliminate all chains of non-psi states between the current state and psi states.
bool hasNonPsiSuccessor = true;
while (hasNonPsiSuccessor) {
hasNonPsiSuccessor = false;
// Only treat the state if it has an outgoing transition other than a self-loop.
auto const currentRow = flexibleMatrix.getRow(initialStateSuccessor);
if (currentRow.size() > 1 || (!currentRow.empty() && currentRow.front().getColumn() != initialStateSuccessor)) {
for (auto const& element : currentRow) {
// If any of the successors is a phi state, we eliminate it (wrt. all its phi predecessors).
if (!psiStates.get(element.getColumn())) {
FlexibleRowType const& successorRow = flexibleMatrix.getRow(element.getColumn());
// Eliminate the successor only if there possibly is a psi state reachable through it.
if (successorRow.size() > 1 || (!successorRow.empty() && successorRow.front().getColumn() != element.getColumn())) {
STORM_LOG_TRACE("Found non-psi successor " << element.getColumn() << " that needs to be eliminated.");
stateEliminator.setStatePhi();
stateEliminator.eliminateState(element.getColumn(), false);
stateEliminator.clearState();
hasNonPsiSuccessor = true;
}
}
}
STORM_LOG_ASSERT(!flexibleMatrix.getRow(initialStateSuccessor).empty(), "(1) New transitions expected to be non-empty.");
}
}
} else {
STORM_LOG_ASSERT(psiStates.get(initialStateSuccessor), "Expected psi state.");
STORM_LOG_TRACE("Is a psi state.");
// At this point, we know that the state satisfies psi and not phi.
// This means, we must compute the probability to reach phi states, which in turn means that we need
// to eliminate all chains of non-phi states between the current state and phi states.
bool hasNonPhiSuccessor = true;
while (hasNonPhiSuccessor) {
hasNonPhiSuccessor = false;
// Only treat the state if it has an outgoing transition other than a self-loop.
auto const currentRow = flexibleMatrix.getRow(initialStateSuccessor);
if (currentRow.size() > 1 || (!currentRow.empty() && currentRow.front().getColumn() != initialStateSuccessor)) {
for (auto const& element : currentRow) {
// If any of the successors is a psi state, we eliminate it (wrt. all its psi predecessors).
if (!phiStates.get(element.getColumn())) {
FlexibleRowType const& successorRow = flexibleMatrix.getRow(element.getColumn());
if (successorRow.size() > 1 || (!successorRow.empty() && successorRow.front().getColumn() != element.getColumn())) {
STORM_LOG_TRACE("Found non-phi successor " << element.getColumn() << " that needs to be eliminated.");
stateEliminator.setStatePsi();
stateEliminator.eliminateState(element.getColumn(), false);
stateEliminator.clearState();
hasNonPhiSuccessor = true;
}
}
}
}
}
}
}
ValueType numerator = storm::utility::zero<ValueType>();
ValueType denominator = storm::utility::zero<ValueType>();
for (auto const& trans1 : flexibleMatrix.getRow(*newInitialStates.begin())) {
auto initialStateSuccessor = trans1.getColumn();
if (phiStates.get(initialStateSuccessor)) {
if (psiStates.get(initialStateSuccessor)) {
numerator += trans1.getValue();
denominator += trans1.getValue();
} else {
ValueType additiveTerm = storm::utility::zero<ValueType>();
for (auto const& trans2 : flexibleMatrix.getRow(initialStateSuccessor)) {
if (psiStates.get(trans2.getColumn())) {
additiveTerm += trans2.getValue();
}
}
additiveTerm *= trans1.getValue();
numerator += additiveTerm;
denominator += additiveTerm;
}
} else {
STORM_LOG_ASSERT(psiStates.get(initialStateSuccessor), "Expected psi state.");
denominator += trans1.getValue();
ValueType additiveTerm = storm::utility::zero<ValueType>();
for (auto const& trans2 : flexibleMatrix.getRow(initialStateSuccessor)) {
if (phiStates.get(trans2.getColumn())) {
additiveTerm += trans2.getValue();
}
}
numerator += trans1.getValue() * additiveTerm;
}
}
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, numerator / denominator));
}
template<typename SparseDtmcModelType>
std::shared_ptr<StatePriorityQueue<typename SparseDtmcModelType::ValueType>> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::createStatePriorityQueue(boost::optional<std::vector<uint_fast64_t>> const& distanceBasedStatePriorities, storm::storage::FlexibleSparseMatrix<ValueType> const& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType>& oneStepProbabilities, storm::storage::BitVector const& states) {
STORM_LOG_TRACE("Creating state priority queue for states " << states);
// Get the settings to customize the priority queue.
storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder order = storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder();
std::vector<storm::storage::sparse::state_type> sortedStates(states.begin(), states.end());
if (order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Random) {
std::random_device randomDevice;
std::mt19937 generator(randomDevice());
std::shuffle(sortedStates.begin(), sortedStates.end(), generator);
return std::make_unique<StaticStatePriorityQueue>(sortedStates);
} else {
if (eliminationOrderNeedsDistances(order)) {
STORM_LOG_THROW(static_cast<bool>(distanceBasedStatePriorities), storm::exceptions::InvalidStateException, "Unable to build state priority queue without distance-based priorities.");
std::sort(sortedStates.begin(), sortedStates.end(), [&distanceBasedStatePriorities] (storm::storage::sparse::state_type const& state1, storm::storage::sparse::state_type const& state2) { return distanceBasedStatePriorities.get()[state1] < distanceBasedStatePriorities.get()[state2]; } );
return std::make_unique<StaticStatePriorityQueue>(sortedStates);
} else if (eliminationOrderIsPenaltyBased(order)) {
std::vector<std::pair<storm::storage::sparse::state_type, uint_fast64_t>> statePenalties(sortedStates.size());
PenaltyFunctionType penaltyFunction = order == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::RegularExpression ? computeStatePenaltyRegularExpression : computeStatePenalty;
for (uint_fast64_t index = 0; index < sortedStates.size(); ++index) {
statePenalties[index] = std::make_pair(sortedStates[index], penaltyFunction(sortedStates[index], transitionMatrix, backwardTransitions, oneStepProbabilities));
}
std::sort(statePenalties.begin(), statePenalties.end(), [] (std::pair<storm::storage::sparse::state_type, uint_fast64_t> const& statePenalty1, std::pair<storm::storage::sparse::state_type, uint_fast64_t> const& statePenalty2) { return statePenalty1.second < statePenalty2.second; } );
if (eliminationOrderIsStatic(order)) {
// For the static penalty version, we need to strip the penalties to create the queue.
for (uint_fast64_t index = 0; index < sortedStates.size(); ++index) {
sortedStates[index] = statePenalties[index].first;
}
return std::make_unique<StaticStatePriorityQueue>(sortedStates);
} else {
// For the dynamic penalty version, we need to give the full state-penalty pairs.
return std::make_unique<DynamicPenaltyStatePriorityQueue>(statePenalties, penaltyFunction);
}
}
}
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Illegal elimination order selected.");
}
template<typename SparseDtmcModelType>
std::shared_ptr<StatePriorityQueue<typename SparseDtmcModelType::ValueType>> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::createNaivePriorityQueue(storm::storage::BitVector const& states) {
std::vector<storm::storage::sparse::state_type> sortedStates(states.begin(), states.end());
return std::shared_ptr<StatePriorityQueue<ValueType>>(new StaticStatePriorityQueue(sortedStates));
}
template<typename SparseDtmcModelType>
void SparseDtmcEliminationModelChecker<SparseDtmcModelType>::performPrioritizedStateElimination(std::shared_ptr<StatePriorityQueue<ValueType>>& priorityQueue, storm::storage::FlexibleSparseMatrix<ValueType>& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType>& backwardTransitions, std::vector<ValueType>& values, storm::storage::BitVector const& initialStates, bool computeResultsForInitialStatesOnly) {
storm::solver::stateelimination::PrioritizedEliminator<SparseDtmcModelType> stateEliminator(transitionMatrix, backwardTransitions, priorityQueue, values);
while (priorityQueue->hasNextState()) {
storm::storage::sparse::state_type state = priorityQueue->popNextState();
bool removeForwardTransitions = computeResultsForInitialStatesOnly && !initialStates.get(state);
stateEliminator.eliminateState(state, removeForwardTransitions);
if (removeForwardTransitions) {
values[state] = storm::utility::zero<ValueType>();
}
STORM_LOG_ASSERT(checkConsistent(transitionMatrix, backwardTransitions), "The forward and backward transition matrices became inconsistent.");
}
}
template<typename SparseDtmcModelType>
void SparseDtmcEliminationModelChecker<SparseDtmcModelType>::performOrdinaryStateElimination(storm::storage::FlexibleSparseMatrix<ValueType>& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType>& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& initialStates, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& values, boost::optional<std::vector<uint_fast64_t>> const& distanceBasedPriorities) {
std::shared_ptr<StatePriorityQueue<ValueType>> statePriorities = createStatePriorityQueue(distanceBasedPriorities, transitionMatrix, backwardTransitions, values, subsystem);
std::size_t numberOfStatesToEliminate = statePriorities->size();
STORM_LOG_DEBUG("Eliminating " << numberOfStatesToEliminate << " states using the state elimination technique." << std::endl);
performPrioritizedStateElimination(statePriorities, transitionMatrix, backwardTransitions, values, initialStates, computeResultsForInitialStatesOnly);
STORM_LOG_DEBUG("Eliminated " << numberOfStatesToEliminate << " states." << std::endl);
}
template<typename SparseDtmcModelType>
uint_fast64_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::performHybridStateElimination(storm::storage::SparseMatrix<ValueType> const& forwardTransitions, storm::storage::FlexibleSparseMatrix<ValueType>& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType>& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& initialStates, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& values, boost::optional<std::vector<uint_fast64_t>> const& distanceBasedPriorities) {
// When using the hybrid technique, we recursively treat the SCCs up to some size.
std::vector<storm::storage::sparse::state_type> entryStateQueue;
STORM_LOG_DEBUG("Eliminating " << subsystem.size() << " states using the hybrid elimination technique." << std::endl);
uint_fast64_t maximalDepth = treatScc(transitionMatrix, values, initialStates, subsystem, initialStates, forwardTransitions, backwardTransitions, false, 0, storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getMaximalSccSize(), entryStateQueue, computeResultsForInitialStatesOnly, distanceBasedPriorities);
// If the entry states were to be eliminated last, we need to do so now.
if (storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().isEliminateEntryStatesLastSet()) {
STORM_LOG_DEBUG("Eliminating " << entryStateQueue.size() << " entry states as a last step.");
std::vector<storm::storage::sparse::state_type> sortedStates(entryStateQueue.begin(), entryStateQueue.end());
std::shared_ptr<StatePriorityQueue<ValueType>> queuePriorities = std::shared_ptr<StatePriorityQueue<ValueType>>(new StaticStatePriorityQueue(sortedStates));
performPrioritizedStateElimination(queuePriorities, transitionMatrix, backwardTransitions, values, initialStates, computeResultsForInitialStatesOnly);
}
STORM_LOG_DEBUG("Eliminated " << subsystem.size() << " states." << std::endl);
return maximalDepth;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeReachabilityValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType>& values, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, bool computeResultsForInitialStatesOnly, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& oneStepProbabilitiesToTarget) {
// Then, we convert the reduced matrix to a more flexible format to be able to perform state elimination more easily.
storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(transitionMatrix);
storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(backwardTransitions);
storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder order = storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder();
boost::optional<std::vector<uint_fast64_t>> distanceBasedPriorities;
if (eliminationOrderNeedsDistances(order)) {
distanceBasedPriorities = getDistanceBasedPriorities(transitionMatrix, backwardTransitions, initialStates, oneStepProbabilitiesToTarget,
eliminationOrderNeedsForwardDistances(order), eliminationOrderNeedsReversedDistances(order));
}
// Create a bit vector that represents the subsystem of states we still have to eliminate.
storm::storage::BitVector subsystem = storm::storage::BitVector(transitionMatrix.getRowCount(), true);
uint_fast64_t maximalDepth = 0;
if (storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::State) {
performOrdinaryStateElimination(flexibleMatrix, flexibleBackwardTransitions, subsystem, initialStates, computeResultsForInitialStatesOnly, values, distanceBasedPriorities);
} else if (storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationMethod() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationMethod::Hybrid) {
maximalDepth = performHybridStateElimination(transitionMatrix, flexibleMatrix, flexibleBackwardTransitions, subsystem, initialStates, computeResultsForInitialStatesOnly, values, distanceBasedPriorities);
}
STORM_LOG_ASSERT(flexibleMatrix.empty(), "Not all transitions were eliminated.");
STORM_LOG_ASSERT(flexibleBackwardTransitions.empty(), "Not all transitions were eliminated.");
// Now, we return the value for the only initial state.
STORM_LOG_DEBUG("Simplifying and returning result.");
for (auto& value : values) {
value = storm::utility::simplify(value);
}
return values;
}
template<typename SparseDtmcModelType>
uint_fast64_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::treatScc(storm::storage::FlexibleSparseMatrix<ValueType>& matrix, std::vector<ValueType>& values, storm::storage::BitVector const& entryStates, storm::storage::BitVector const& scc, storm::storage::BitVector const& initialStates, storm::storage::SparseMatrix<ValueType> const& forwardTransitions, storm::storage::FlexibleSparseMatrix<ValueType>& backwardTransitions, bool eliminateEntryStates, uint_fast64_t level, uint_fast64_t maximalSccSize, std::vector<storm::storage::sparse::state_type>& entryStateQueue, bool computeResultsForInitialStatesOnly, boost::optional<std::vector<uint_fast64_t>> const& distanceBasedPriorities) {
uint_fast64_t maximalDepth = level;
// If the SCCs are large enough, we try to split them further.
if (scc.getNumberOfSetBits() > maximalSccSize) {
STORM_LOG_TRACE("SCC is large enough (" << scc.getNumberOfSetBits() << " states) to be decomposed further.");
// Here, we further decompose the SCC into sub-SCCs.
storm::storage::StronglyConnectedComponentDecomposition<ValueType> decomposition(forwardTransitions, scc & ~entryStates, false, false);
STORM_LOG_TRACE("Decomposed SCC into " << decomposition.size() << " sub-SCCs.");
// Store a bit vector of remaining SCCs so we can be flexible when it comes to the order in which
// we eliminate the SCCs.
storm::storage::BitVector remainingSccs(decomposition.size(), true);
// First, get rid of the trivial SCCs.
storm::storage::BitVector statesInTrivialSccs(matrix.getRowCount());
for (uint_fast64_t sccIndex = 0; sccIndex < decomposition.size(); ++sccIndex) {
storm::storage::StronglyConnectedComponent const& scc = decomposition.getBlock(sccIndex);
if (scc.isTrivial()) {
// Put the only state of the trivial SCC into the set of states to eliminate.
statesInTrivialSccs.set(*scc.begin(), true);
remainingSccs.set(sccIndex, false);
}
}
std::shared_ptr<StatePriorityQueue<ValueType>> statePriorities = createStatePriorityQueue(distanceBasedPriorities, matrix, backwardTransitions, values, statesInTrivialSccs);
STORM_LOG_TRACE("Eliminating " << statePriorities->size() << " trivial SCCs.");
performPrioritizedStateElimination(statePriorities, matrix, backwardTransitions, values, initialStates, computeResultsForInitialStatesOnly);
STORM_LOG_TRACE("Eliminated all trivial SCCs.");
// And then recursively treat the remaining sub-SCCs.
STORM_LOG_TRACE("Eliminating " << remainingSccs.getNumberOfSetBits() << " remaining SCCs on level " << level << ".");
for (auto sccIndex : remainingSccs) {
storm::storage::StronglyConnectedComponent const& newScc = decomposition.getBlock(sccIndex);
// Rewrite SCC into bit vector and subtract it from the remaining states.
storm::storage::BitVector newSccAsBitVector(forwardTransitions.getRowCount(), newScc.begin(), newScc.end());
// Determine the set of entry states of the SCC.
storm::storage::BitVector entryStates(forwardTransitions.getRowCount());
for (auto const& state : newScc) {
for (auto const& predecessor : backwardTransitions.getRow(state)) {
if (predecessor.getValue() != storm::utility::zero<ValueType>() && !newSccAsBitVector.get(predecessor.getColumn())) {
entryStates.set(state);
}
}
}
// Recursively descend in SCC-hierarchy.
uint_fast64_t depth = treatScc(matrix, values, entryStates, newSccAsBitVector, initialStates, forwardTransitions, backwardTransitions, eliminateEntryStates || !storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().isEliminateEntryStatesLastSet(), level + 1, maximalSccSize, entryStateQueue, computeResultsForInitialStatesOnly, distanceBasedPriorities);
maximalDepth = std::max(maximalDepth, depth);
}
} else {
// In this case, we perform simple state elimination in the current SCC.
STORM_LOG_TRACE("SCC of size " << scc.getNumberOfSetBits() << " is small enough to be eliminated directly.");
std::shared_ptr<StatePriorityQueue<ValueType>> statePriorities = createStatePriorityQueue(distanceBasedPriorities, matrix, backwardTransitions, values, scc & ~entryStates);
performPrioritizedStateElimination(statePriorities, matrix, backwardTransitions, values, initialStates, computeResultsForInitialStatesOnly);
STORM_LOG_TRACE("Eliminated all states of SCC.");
}
// Finally, eliminate the entry states (if we are required to do so).
if (eliminateEntryStates) {
STORM_LOG_TRACE("Finally, eliminating entry states.");
std::shared_ptr<StatePriorityQueue<ValueType>> naivePriorities = createNaivePriorityQueue(entryStates);
performPrioritizedStateElimination(naivePriorities, matrix, backwardTransitions, values, initialStates, computeResultsForInitialStatesOnly);
STORM_LOG_TRACE("Eliminated/added entry states.");
} else {
STORM_LOG_TRACE("Finally, adding entry states to queue.");
for (auto state : entryStates) {
entryStateQueue.push_back(state);
}
}
return maximalDepth;
}
template<typename SparseDtmcModelType>
std::vector<uint_fast64_t> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::getDistanceBasedPriorities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& transitionMatrixTransposed, storm::storage::BitVector const& initialStates, std::vector<ValueType> const& oneStepProbabilities, bool forward, bool reverse) {
std::vector<uint_fast64_t> statePriorities(transitionMatrix.getRowCount());
std::vector<storm::storage::sparse::state_type> states(transitionMatrix.getRowCount());
for (std::size_t index = 0; index < states.size(); ++index) {
states[index] = index;
}
std::vector<std::size_t> distances = getStateDistances(transitionMatrix, transitionMatrixTransposed, initialStates, oneStepProbabilities,
storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::Forward ||
storm::settings::getModule<storm::settings::modules::SparseDtmcEliminationModelCheckerSettings>().getEliminationOrder() == storm::settings::modules::SparseDtmcEliminationModelCheckerSettings::EliminationOrder::ForwardReversed);
// In case of the forward or backward ordering, we can sort the states according to the distances.
if (forward ^ reverse) {
std::sort(states.begin(), states.end(), [&distances] (storm::storage::sparse::state_type const& state1, storm::storage::sparse::state_type const& state2) { return distances[state1] < distances[state2]; } );
} else {
// Otherwise, we sort them according to descending distances.
std::sort(states.begin(), states.end(), [&distances] (storm::storage::sparse::state_type const& state1, storm::storage::sparse::state_type const& state2) { return distances[state1] > distances[state2]; } );
}
// Now convert the ordering of the states to priorities.
for (uint_fast64_t index = 0; index < states.size(); ++index) {
statePriorities[states[index]] = index;
}
return statePriorities;
}
template<typename SparseDtmcModelType>
std::vector<std::size_t> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::getStateDistances(storm::storage::SparseMatrix<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> const& transitionMatrix, storm::storage::SparseMatrix<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> const& transitionMatrixTransposed, storm::storage::BitVector const& initialStates, std::vector<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> const& oneStepProbabilities, bool forward) {
if (forward) {
return storm::utility::graph::getDistances(transitionMatrix, initialStates);
} else {
// Since the target states were eliminated from the matrix already, we construct a replacement by
// treating all states that have some non-zero probability to go to a target state in one step as target
// states.
storm::storage::BitVector pseudoTargetStates(transitionMatrix.getRowCount());
for (std::size_t index = 0; index < oneStepProbabilities.size(); ++index) {
if (oneStepProbabilities[index] != storm::utility::zero<ValueType>()) {
pseudoTargetStates.set(index);
}
}
return storm::utility::graph::getDistances(transitionMatrixTransposed, pseudoTargetStates);
}
}
template<typename SparseDtmcModelType>
uint_fast64_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeStatePenalty(storm::storage::sparse::state_type const& state, storm::storage::FlexibleSparseMatrix<ValueType> const& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& oneStepProbabilities) {
uint_fast64_t penalty = 0;
bool hasParametricSelfLoop = false;
for (auto const& predecessor : backwardTransitions.getRow(state)) {
for (auto const& successor : transitionMatrix.getRow(state)) {
penalty += estimateComplexity(predecessor.getValue()) * estimateComplexity(successor.getValue());
// STORM_LOG_TRACE("1) penalty += " << (estimateComplexity(predecessor.getValue()) * estimateComplexity(successor.getValue())) << " because of " << predecessor.getValue() << " and " << successor.getValue() << ".");
}
if (predecessor.getColumn() == state) {
hasParametricSelfLoop = !storm::utility::isConstant(predecessor.getValue());
}
penalty += estimateComplexity(oneStepProbabilities[predecessor.getColumn()]) * estimateComplexity(predecessor.getValue()) * estimateComplexity(oneStepProbabilities[state]);
// STORM_LOG_TRACE("2) penalty += " << (estimateComplexity(oneStepProbabilities[predecessor.getColumn()]) * estimateComplexity(predecessor.getValue()) * estimateComplexity(oneStepProbabilities[state])) << " because of " << oneStepProbabilities[predecessor.getColumn()] << ", " << predecessor.getValue() << " and " << oneStepProbabilities[state] << ".");
}
// If it is a self-loop that is parametric, we increase the penalty a lot.
if (hasParametricSelfLoop) {
penalty *= 10;
// STORM_LOG_TRACE("3) penalty *= 100, because of parametric self-loop.");
}
// STORM_LOG_TRACE("New penalty of state " << state << " is " << penalty << ".");
return penalty;
}
template<typename SparseDtmcModelType>
uint_fast64_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeStatePenaltyRegularExpression(storm::storage::sparse::state_type const& state, storm::storage::FlexibleSparseMatrix<ValueType> const& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& oneStepProbabilities) {
return backwardTransitions.getRow(state).size() * transitionMatrix.getRow(state).size();
}
template<typename ValueType>
void StatePriorityQueue<ValueType>::update(storm::storage::sparse::state_type, storm::storage::FlexibleSparseMatrix<ValueType> const& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& oneStepProbabilities) {
// Intentionally left empty.
}
template<typename SparseDtmcModelType>
SparseDtmcEliminationModelChecker<SparseDtmcModelType>::StaticStatePriorityQueue::StaticStatePriorityQueue(std::vector<storm::storage::sparse::state_type> const& sortedStates) : StatePriorityQueue<ValueType>(), sortedStates(sortedStates), currentPosition(0) {
// Intentionally left empty.
}
template<typename SparseDtmcModelType>
bool SparseDtmcEliminationModelChecker<SparseDtmcModelType>::StaticStatePriorityQueue::hasNextState() const {
return currentPosition < sortedStates.size();
}
template<typename SparseDtmcModelType>
storm::storage::sparse::state_type SparseDtmcEliminationModelChecker<SparseDtmcModelType>::StaticStatePriorityQueue::popNextState() {
++currentPosition;
return sortedStates[currentPosition - 1];
}
template<typename SparseDtmcModelType>
std::size_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::StaticStatePriorityQueue::size() const {
return sortedStates.size() - currentPosition;
}
template<typename SparseDtmcModelType>
SparseDtmcEliminationModelChecker<SparseDtmcModelType>::DynamicPenaltyStatePriorityQueue::DynamicPenaltyStatePriorityQueue(std::vector<std::pair<storm::storage::sparse::state_type, uint_fast64_t>> const& sortedStatePenaltyPairs, PenaltyFunctionType const& penaltyFunction) : StatePriorityQueue<ValueType>(), priorityQueue(), stateToPriorityMapping(), penaltyFunction(penaltyFunction) {
// Insert all state-penalty pairs into our priority queue.
for (auto const& statePenalty : sortedStatePenaltyPairs) {
priorityQueue.insert(priorityQueue.end(), statePenalty);
}
// Insert all state-penalty pairs into auxiliary mapping.
for (auto const& statePenalty : sortedStatePenaltyPairs) {
stateToPriorityMapping.emplace(statePenalty);
}
}
template<typename SparseDtmcModelType>
bool SparseDtmcEliminationModelChecker<SparseDtmcModelType>::DynamicPenaltyStatePriorityQueue::hasNextState() const {
return !priorityQueue.empty();
}
template<typename SparseDtmcModelType>
storm::storage::sparse::state_type SparseDtmcEliminationModelChecker<SparseDtmcModelType>::DynamicPenaltyStatePriorityQueue::popNextState() {
auto it = priorityQueue.begin();
STORM_LOG_TRACE("Popping state " << it->first << " with priority " << it->second << ".");
storm::storage::sparse::state_type result = it->first;
priorityQueue.erase(priorityQueue.begin());
return result;
}
template<typename SparseDtmcModelType>
void SparseDtmcEliminationModelChecker<SparseDtmcModelType>::DynamicPenaltyStatePriorityQueue::update(storm::storage::sparse::state_type state, storm::storage::FlexibleSparseMatrix<ValueType> const& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& oneStepProbabilities) {
// First, we need to find the priority until now.
auto priorityIt = stateToPriorityMapping.find(state);
// If the priority queue does not store the priority of the given state, we must not update it.
if (priorityIt == stateToPriorityMapping.end()) {
return;
}
uint_fast64_t lastPriority = priorityIt->second;
uint_fast64_t newPriority = penaltyFunction(state, transitionMatrix, backwardTransitions, oneStepProbabilities);
if (lastPriority != newPriority) {
// Erase and re-insert into the priority queue with the new priority.
auto queueIt = priorityQueue.find(std::make_pair(state, lastPriority));
priorityQueue.erase(queueIt);
priorityQueue.emplace(state, newPriority);
// Finally, update the probability in the mapping.
priorityIt->second = newPriority;
}
}
template<typename SparseDtmcModelType>
std::size_t SparseDtmcEliminationModelChecker<SparseDtmcModelType>::DynamicPenaltyStatePriorityQueue::size() const {
return priorityQueue.size();
}
template<typename SparseDtmcModelType>
bool SparseDtmcEliminationModelChecker<SparseDtmcModelType>::checkConsistent(storm::storage::FlexibleSparseMatrix<ValueType>& transitionMatrix, storm::storage::FlexibleSparseMatrix<ValueType>& backwardTransitions) {
for (uint_fast64_t forwardIndex = 0; forwardIndex < transitionMatrix.getRowCount(); ++forwardIndex) {
for (auto const& forwardEntry : transitionMatrix.getRow(forwardIndex)) {
if (forwardEntry.getColumn() == forwardIndex) {
continue;
}
bool foundCorrespondingElement = false;
for (auto const& backwardEntry : backwardTransitions.getRow(forwardEntry.getColumn())) {
if (backwardEntry.getColumn() == forwardIndex) {
foundCorrespondingElement = true;
}
}
if (!foundCorrespondingElement) {
return false;
}
}
}
return true;
}
template class StatePriorityQueue<double>;
template class SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<double>>;
template uint_fast64_t estimateComplexity(double const& value);
#ifdef STORM_HAVE_CARL
template class StatePriorityQueue<storm::RationalFunction>;
template class SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<storm::RationalFunction>>;
#endif
} // namespace modelchecker
} // namespace storm