You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							43 lines
						
					
					
						
							1.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							43 lines
						
					
					
						
							1.7 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/SVD>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void upperbidiag(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  const typename MatrixType::Index rows = m.rows();
							 | 
						|
								  const typename MatrixType::Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime,  MatrixType::ColsAtCompileTime> RealMatrixType;
							 | 
						|
								  typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime,  MatrixType::RowsAtCompileTime> TransposeMatrixType;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  internal::UpperBidiagonalization<MatrixType> ubd(a);
							 | 
						|
								  RealMatrixType b(rows, cols);
							 | 
						|
								  b.setZero();
							 | 
						|
								  b.block(0,0,cols,cols) = ubd.bidiagonal();
							 | 
						|
								  MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint();
							 | 
						|
								  VERIFY_IS_APPROX(a,c);
							 | 
						|
								  TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint();
							 | 
						|
								  VERIFY_IS_APPROX(a.adjoint(),d);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_upperbidiagonalization()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								   CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) );
							 | 
						|
								   CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) );
							 | 
						|
								   CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) );
							 | 
						|
								   CALL_SUBTEST_4( upperbidiag(MatrixXcd(16,15)) );
							 | 
						|
								   CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) );
							 | 
						|
								   CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) );
							 | 
						|
								   CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) );
							 | 
						|
								  }
							 | 
						|
								}
							 |