You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							4.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <limits>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void eigensolver(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     EigenSolver.h
							 | 
						|
								  */
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
							 | 
						|
								  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType a1 = MatrixType::Random(rows,cols);
							 | 
						|
								  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
							 | 
						|
								
							 | 
						|
								  EigenSolver<MatrixType> ei0(symmA);
							 | 
						|
								  VERIFY_IS_EQUAL(ei0.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
							 | 
						|
								  VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
							 | 
						|
								    (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
							 | 
						|
								
							 | 
						|
								  EigenSolver<MatrixType> ei1(a);
							 | 
						|
								  VERIFY_IS_EQUAL(ei1.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
							 | 
						|
								  VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
							 | 
						|
								                   ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
							 | 
						|
								  VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
							 | 
						|
								  VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
							 | 
						|
								
							 | 
						|
								  EigenSolver<MatrixType> ei2;
							 | 
						|
								  ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
							 | 
						|
								  VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
							 | 
						|
								  if (rows > 2) {
							 | 
						|
								    ei2.setMaxIterations(1).compute(a);
							 | 
						|
								    VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
							 | 
						|
								    VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  EigenSolver<MatrixType> eiNoEivecs(a, false);
							 | 
						|
								  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
							 | 
						|
								  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
							 | 
						|
								  VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
							 | 
						|
								
							 | 
						|
								  MatrixType id = MatrixType::Identity(rows, cols);
							 | 
						|
								  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
							 | 
						|
								
							 | 
						|
								  if (rows > 2)
							 | 
						|
								  {
							 | 
						|
								    // Test matrix with NaN
							 | 
						|
								    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
							 | 
						|
								    EigenSolver<MatrixType> eiNaN(a);
							 | 
						|
								    VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  EigenSolver<MatrixType> eig;
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvalues());
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(m.rows(),m.cols());
							 | 
						|
								  eig.compute(a, false);
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.eigenvectors());
							 | 
						|
								  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigensolver_generic()
							 | 
						|
								{
							 | 
						|
								  int s = 0;
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( eigensolver(Matrix4f()) );
							 | 
						|
								    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								    CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
							 | 
						|
								
							 | 
						|
								    // some trivial but implementation-wise tricky cases
							 | 
						|
								    CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
							 | 
						|
								    CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
							 | 
						|
								    CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
							 | 
						|
								    CALL_SUBTEST_4( eigensolver(Matrix2d()) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
							 | 
						|
								  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
							 | 
						|
								  CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
							 | 
						|
								  CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
							 | 
						|
								  CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
							 | 
						|
								
							 | 
						|
								  // regression test for bug 410
							 | 
						|
								  CALL_SUBTEST_2(
							 | 
						|
								  {
							 | 
						|
								     MatrixXd A(1,1);
							 | 
						|
								     A(0,0) = std::sqrt(-1.);
							 | 
						|
								     Eigen::EigenSolver<MatrixXd> solver(A);
							 | 
						|
								     MatrixXd V(1, 1);
							 | 
						|
								     V(0,0) = solver.eigenvectors()(0,0).real();
							 | 
						|
								  }
							 | 
						|
								  );
							 | 
						|
								  
							 | 
						|
								  TEST_SET_BUT_UNUSED_VARIABLE(s)
							 | 
						|
								}
							 |