You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							189 lines
						
					
					
						
							5.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							189 lines
						
					
					
						
							5.1 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| 
 | |
| #ifndef EIGEN_ALIGNED_VECTOR3 | |
| #define EIGEN_ALIGNED_VECTOR3 | |
| 
 | |
| #include <Eigen/Geometry> | |
| 
 | |
| namespace Eigen { | |
| 
 | |
| /** \ingroup Unsupported_modules | |
|   * \defgroup AlignedVector3_Module Aligned vector3 module | |
|   * | |
|   * \code | |
|   * #include <unsupported/Eigen/AlignedVector3> | |
|   * \endcode | |
|   */ | |
|   //@{ | |
| 
 | |
| 
 | |
| /** \class AlignedVector3 | |
|   * | |
|   * \brief A vectorization friendly 3D vector | |
|   * | |
|   * This class represents a 3D vector internally using a 4D vector | |
|   * such that vectorization can be seamlessly enabled. Of course, | |
|   * the same result can be achieved by directly using a 4D vector. | |
|   * This class makes this process simpler. | |
|   * | |
|   */ | |
| // TODO specialize Cwise | |
| template<typename _Scalar> class AlignedVector3; | |
| 
 | |
| namespace internal { | |
| template<typename _Scalar> struct traits<AlignedVector3<_Scalar> > | |
|   : traits<Matrix<_Scalar,3,1,0,4,1> > | |
| { | |
| }; | |
| } | |
| 
 | |
| template<typename _Scalar> class AlignedVector3 | |
|   : public MatrixBase<AlignedVector3<_Scalar> > | |
| { | |
|     typedef Matrix<_Scalar,4,1> CoeffType; | |
|     CoeffType m_coeffs; | |
|   public: | |
| 
 | |
|     typedef MatrixBase<AlignedVector3<_Scalar> > Base;	 | |
|     EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3) | |
|     using Base::operator*; | |
| 
 | |
|     inline Index rows() const { return 3; } | |
|     inline Index cols() const { return 1; } | |
| 
 | |
|     inline const Scalar& coeff(Index row, Index col) const | |
|     { return m_coeffs.coeff(row, col); } | |
| 
 | |
|     inline Scalar& coeffRef(Index row, Index col) | |
|     { return m_coeffs.coeffRef(row, col); } | |
| 
 | |
|     inline const Scalar& coeff(Index index) const | |
|     { return m_coeffs.coeff(index); } | |
| 
 | |
|     inline Scalar& coeffRef(Index index) | |
|     { return m_coeffs.coeffRef(index);} | |
| 
 | |
| 
 | |
|     inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) | |
|       : m_coeffs(x, y, z, Scalar(0)) | |
|     {} | |
| 
 | |
|     inline AlignedVector3(const AlignedVector3& other) | |
|       : Base(), m_coeffs(other.m_coeffs) | |
|     {} | |
| 
 | |
|     template<typename XprType, int Size=XprType::SizeAtCompileTime> | |
|     struct generic_assign_selector {}; | |
| 
 | |
|     template<typename XprType> struct generic_assign_selector<XprType,4> | |
|     { | |
|       inline static void run(AlignedVector3& dest, const XprType& src) | |
|       { | |
|         dest.m_coeffs = src; | |
|       } | |
|     }; | |
| 
 | |
|     template<typename XprType> struct generic_assign_selector<XprType,3> | |
|     { | |
|       inline static void run(AlignedVector3& dest, const XprType& src) | |
|       { | |
|         dest.m_coeffs.template head<3>() = src; | |
|         dest.m_coeffs.w() = Scalar(0); | |
|       } | |
|     }; | |
| 
 | |
|     template<typename Derived> | |
|     inline explicit AlignedVector3(const MatrixBase<Derived>& other) | |
|     { | |
|       generic_assign_selector<Derived>::run(*this,other.derived()); | |
|     } | |
| 
 | |
|     inline AlignedVector3& operator=(const AlignedVector3& other) | |
|     { m_coeffs = other.m_coeffs; return *this; } | |
| 
 | |
| 
 | |
|     inline AlignedVector3 operator+(const AlignedVector3& other) const | |
|     { return AlignedVector3(m_coeffs + other.m_coeffs); } | |
| 
 | |
|     inline AlignedVector3& operator+=(const AlignedVector3& other) | |
|     { m_coeffs += other.m_coeffs; return *this; } | |
| 
 | |
|     inline AlignedVector3 operator-(const AlignedVector3& other) const | |
|     { return AlignedVector3(m_coeffs - other.m_coeffs); } | |
| 
 | |
|     inline AlignedVector3 operator-=(const AlignedVector3& other) | |
|     { m_coeffs -= other.m_coeffs; return *this; } | |
| 
 | |
|     inline AlignedVector3 operator*(const Scalar& s) const | |
|     { return AlignedVector3(m_coeffs * s); } | |
| 
 | |
|     inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) | |
|     { return AlignedVector3(s * vec.m_coeffs); } | |
| 
 | |
|     inline AlignedVector3& operator*=(const Scalar& s) | |
|     { m_coeffs *= s; return *this; } | |
| 
 | |
|     inline AlignedVector3 operator/(const Scalar& s) const | |
|     { return AlignedVector3(m_coeffs / s); } | |
| 
 | |
|     inline AlignedVector3& operator/=(const Scalar& s) | |
|     { m_coeffs /= s; return *this; } | |
| 
 | |
|     inline Scalar dot(const AlignedVector3& other) const | |
|     { | |
|       eigen_assert(m_coeffs.w()==Scalar(0)); | |
|       eigen_assert(other.m_coeffs.w()==Scalar(0)); | |
|       return m_coeffs.dot(other.m_coeffs); | |
|     } | |
| 
 | |
|     inline void normalize() | |
|     { | |
|       m_coeffs /= norm(); | |
|     } | |
| 
 | |
|     inline AlignedVector3 normalized() | |
|     { | |
|       return AlignedVector3(m_coeffs / norm()); | |
|     } | |
| 
 | |
|     inline Scalar sum() const | |
|     { | |
|       eigen_assert(m_coeffs.w()==Scalar(0)); | |
|       return m_coeffs.sum(); | |
|     } | |
| 
 | |
|     inline Scalar squaredNorm() const | |
|     { | |
|       eigen_assert(m_coeffs.w()==Scalar(0)); | |
|       return m_coeffs.squaredNorm(); | |
|     } | |
| 
 | |
|     inline Scalar norm() const | |
|     { | |
|       return internal::sqrt(squaredNorm()); | |
|     } | |
| 
 | |
|     inline AlignedVector3 cross(const AlignedVector3& other) const | |
|     { | |
|       return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); | |
|     } | |
| 
 | |
|     template<typename Derived> | |
|     inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const | |
|     { | |
|       return m_coeffs.template head<3>().isApprox(other,eps); | |
|     } | |
| }; | |
| 
 | |
| //@} | |
| 
 | |
| } | |
| 
 | |
| #endif // EIGEN_ALIGNED_VECTOR3
 |