You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							488 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							488 lines
						
					
					
						
							15 KiB
						
					
					
				| /* zhbmv.f -- translated by f2c (version 20100827). | |
|    You must link the resulting object file with libf2c: | |
| 	on Microsoft Windows system, link with libf2c.lib; | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm | |
| 	-- in that order, at the end of the command line, as in | |
| 		cc *.o -lf2c -lm | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
|  | |
| 		http://www.netlib.org/f2c/libf2c.zip | |
| */ | |
| 
 | |
| #include "datatypes.h" | |
|  | |
| /* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex  | |
| 	*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer * | |
| 	incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen  | |
| 	uplo_len) | |
| { | |
|     /* System generated locals */ | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; | |
|     doublereal d__1; | |
|     doublecomplex z__1, z__2, z__3, z__4; | |
| 
 | |
|     /* Builtin functions */ | |
|     void d_cnjg(doublecomplex *, doublecomplex *); | |
| 
 | |
|     /* Local variables */ | |
|     integer i__, j, l, ix, iy, jx, jy, kx, ky, info; | |
|     doublecomplex temp1, temp2; | |
|     extern logical lsame_(char *, char *, ftnlen, ftnlen); | |
|     integer kplus1; | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); | |
| 
 | |
| /*     .. Scalar Arguments .. */ | |
| /*     .. */ | |
| /*     .. Array Arguments .. */ | |
| /*     .. */ | |
| 
 | |
| /*  Purpose */ | |
| /*  ======= */ | |
| 
 | |
| /*  ZHBMV  performs the matrix-vector  operation */ | |
| 
 | |
| /*     y := alpha*A*x + beta*y, */ | |
| 
 | |
| /*  where alpha and beta are scalars, x and y are n element vectors and */ | |
| /*  A is an n by n hermitian band matrix, with k super-diagonals. */ | |
| 
 | |
| /*  Arguments */ | |
| /*  ========== */ | |
| 
 | |
| /*  UPLO   - CHARACTER*1. */ | |
| /*           On entry, UPLO specifies whether the upper or lower */ | |
| /*           triangular part of the band matrix A is being supplied as */ | |
| /*           follows: */ | |
| 
 | |
| /*              UPLO = 'U' or 'u'   The upper triangular part of A is */ | |
| /*                                  being supplied. */ | |
| 
 | |
| /*              UPLO = 'L' or 'l'   The lower triangular part of A is */ | |
| /*                                  being supplied. */ | |
| 
 | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  N      - INTEGER. */ | |
| /*           On entry, N specifies the order of the matrix A. */ | |
| /*           N must be at least zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  K      - INTEGER. */ | |
| /*           On entry, K specifies the number of super-diagonals of the */ | |
| /*           matrix A. K must satisfy  0 .le. K. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  ALPHA  - COMPLEX*16      . */ | |
| /*           On entry, ALPHA specifies the scalar alpha. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ). */ | |
| /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ | |
| /*           by n part of the array A must contain the upper triangular */ | |
| /*           band part of the hermitian matrix, supplied column by */ | |
| /*           column, with the leading diagonal of the matrix in row */ | |
| /*           ( k + 1 ) of the array, the first super-diagonal starting at */ | |
| /*           position 2 in row k, and so on. The top left k by k triangle */ | |
| /*           of the array A is not referenced. */ | |
| /*           The following program segment will transfer the upper */ | |
| /*           triangular part of a hermitian band matrix from conventional */ | |
| /*           full matrix storage to band storage: */ | |
| 
 | |
| /*                 DO 20, J = 1, N */ | |
| /*                    M = K + 1 - J */ | |
| /*                    DO 10, I = MAX( 1, J - K ), J */ | |
| /*                       A( M + I, J ) = matrix( I, J ) */ | |
| /*              10    CONTINUE */ | |
| /*              20 CONTINUE */ | |
| 
 | |
| /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ | |
| /*           by n part of the array A must contain the lower triangular */ | |
| /*           band part of the hermitian matrix, supplied column by */ | |
| /*           column, with the leading diagonal of the matrix in row 1 of */ | |
| /*           the array, the first sub-diagonal starting at position 1 in */ | |
| /*           row 2, and so on. The bottom right k by k triangle of the */ | |
| /*           array A is not referenced. */ | |
| /*           The following program segment will transfer the lower */ | |
| /*           triangular part of a hermitian band matrix from conventional */ | |
| /*           full matrix storage to band storage: */ | |
| 
 | |
| /*                 DO 20, J = 1, N */ | |
| /*                    M = 1 - J */ | |
| /*                    DO 10, I = J, MIN( N, J + K ) */ | |
| /*                       A( M + I, J ) = matrix( I, J ) */ | |
| /*              10    CONTINUE */ | |
| /*              20 CONTINUE */ | |
| 
 | |
| /*           Note that the imaginary parts of the diagonal elements need */ | |
| /*           not be set and are assumed to be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  LDA    - INTEGER. */ | |
| /*           On entry, LDA specifies the first dimension of A as declared */ | |
| /*           in the calling (sub) program. LDA must be at least */ | |
| /*           ( k + 1 ). */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  X      - COMPLEX*16       array of DIMENSION at least */ | |
| /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | |
| /*           Before entry, the incremented array X must contain the */ | |
| /*           vector x. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  INCX   - INTEGER. */ | |
| /*           On entry, INCX specifies the increment for the elements of */ | |
| /*           X. INCX must not be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  BETA   - COMPLEX*16      . */ | |
| /*           On entry, BETA specifies the scalar beta. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  Y      - COMPLEX*16       array of DIMENSION at least */ | |
| /*           ( 1 + ( n - 1 )*abs( INCY ) ). */ | |
| /*           Before entry, the incremented array Y must contain the */ | |
| /*           vector y. On exit, Y is overwritten by the updated vector y. */ | |
| 
 | |
| /*  INCY   - INTEGER. */ | |
| /*           On entry, INCY specifies the increment for the elements of */ | |
| /*           Y. INCY must not be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  Further Details */ | |
| /*  =============== */ | |
| 
 | |
| /*  Level 2 Blas routine. */ | |
| 
 | |
| /*  -- Written on 22-October-1986. */ | |
| /*     Jack Dongarra, Argonne National Lab. */ | |
| /*     Jeremy Du Croz, Nag Central Office. */ | |
| /*     Sven Hammarling, Nag Central Office. */ | |
| /*     Richard Hanson, Sandia National Labs. */ | |
| 
 | |
| /*  ===================================================================== */ | |
| 
 | |
| /*     .. Parameters .. */ | |
| /*     .. */ | |
| /*     .. Local Scalars .. */ | |
| /*     .. */ | |
| /*     .. External Functions .. */ | |
| /*     .. */ | |
| /*     .. External Subroutines .. */ | |
| /*     .. */ | |
| /*     .. Intrinsic Functions .. */ | |
| /*     .. */ | |
| 
 | |
| /*     Test the input parameters. */ | |
| 
 | |
|     /* Parameter adjustments */ | |
|     a_dim1 = *lda; | |
|     a_offset = 1 + a_dim1; | |
|     a -= a_offset; | |
|     --x; | |
|     --y; | |
| 
 | |
|     /* Function Body */ | |
|     info = 0; | |
|     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( | |
| 	    ftnlen)1, (ftnlen)1)) { | |
| 	info = 1; | |
|     } else if (*n < 0) { | |
| 	info = 2; | |
|     } else if (*k < 0) { | |
| 	info = 3; | |
|     } else if (*lda < *k + 1) { | |
| 	info = 6; | |
|     } else if (*incx == 0) { | |
| 	info = 8; | |
|     } else if (*incy == 0) { | |
| 	info = 11; | |
|     } | |
|     if (info != 0) { | |
| 	xerbla_("ZHBMV ", &info, (ftnlen)6); | |
| 	return 0; | |
|     } | |
| 
 | |
| /*     Quick return if possible. */ | |
| 
 | |
|     if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&  | |
|                                                          beta->i == 0.))) { | |
| 	return 0; | |
|     } | |
| 
 | |
| /*     Set up the start points in  X  and  Y. */ | |
| 
 | |
|     if (*incx > 0) { | |
| 	kx = 1; | |
|     } else { | |
| 	kx = 1 - (*n - 1) * *incx; | |
|     } | |
|     if (*incy > 0) { | |
| 	ky = 1; | |
|     } else { | |
| 	ky = 1 - (*n - 1) * *incy; | |
|     } | |
| 
 | |
| /*     Start the operations. In this version the elements of the array A */ | |
| /*     are accessed sequentially with one pass through A. */ | |
| 
 | |
| /*     First form  y := beta*y. */ | |
| 
 | |
|     if (beta->r != 1. || beta->i != 0.) { | |
| 	if (*incy == 1) { | |
| 	    if (beta->r == 0. && beta->i == 0.) { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = i__; | |
| 		    y[i__2].r = 0., y[i__2].i = 0.; | |
| /* L10: */ | |
| 		} | |
| 	    } else { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = i__; | |
| 		    i__3 = i__; | |
| 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,  | |
| 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | |
| 			    .r; | |
| 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i; | |
| /* L20: */ | |
| 		} | |
| 	    } | |
| 	} else { | |
| 	    iy = ky; | |
| 	    if (beta->r == 0. && beta->i == 0.) { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = iy; | |
| 		    y[i__2].r = 0., y[i__2].i = 0.; | |
| 		    iy += *incy; | |
| /* L30: */ | |
| 		} | |
| 	    } else { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = iy; | |
| 		    i__3 = iy; | |
| 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,  | |
| 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | |
| 			    .r; | |
| 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i; | |
| 		    iy += *incy; | |
| /* L40: */ | |
| 		} | |
| 	    } | |
| 	} | |
|     } | |
|     if (alpha->r == 0. && alpha->i == 0.) { | |
| 	return 0; | |
|     } | |
|     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { | |
| 
 | |
| /*        Form  y  when upper triangle of A is stored. */ | |
| 
 | |
| 	kplus1 = *k + 1; | |
| 	if (*incx == 1 && *incy == 1) { | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__2 = j; | |
| 		z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = | |
| 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r; | |
| 		temp1.r = z__1.r, temp1.i = z__1.i; | |
| 		temp2.r = 0., temp2.i = 0.; | |
| 		l = kplus1 - j; | |
| /* Computing MAX */ | |
| 		i__2 = 1, i__3 = j - *k; | |
| 		i__4 = j - 1; | |
| 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { | |
| 		    i__2 = i__; | |
| 		    i__3 = i__; | |
| 		    i__5 = l + i__ + j * a_dim1; | |
| 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,  | |
| 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] | |
| 			    .r; | |
| 		    z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; | |
| 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i; | |
| 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | |
| 		    i__2 = i__; | |
| 		    z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i = | |
| 			     z__3.r * x[i__2].i + z__3.i * x[i__2].r; | |
| 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | |
| 		    temp2.r = z__1.r, temp2.i = z__1.i; | |
| /* L50: */ | |
| 		} | |
| 		i__4 = j; | |
| 		i__2 = j; | |
| 		i__3 = kplus1 + j * a_dim1; | |
| 		d__1 = a[i__3].r; | |
| 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; | |
| 		z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i; | |
| 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; | |
| 		y[i__4].r = z__1.r, y[i__4].i = z__1.i; | |
| /* L60: */ | |
| 	    } | |
| 	} else { | |
| 	    jx = kx; | |
| 	    jy = ky; | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__4 = jx; | |
| 		z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i = | |
| 			 alpha->r * x[i__4].i + alpha->i * x[i__4].r; | |
| 		temp1.r = z__1.r, temp1.i = z__1.i; | |
| 		temp2.r = 0., temp2.i = 0.; | |
| 		ix = kx; | |
| 		iy = ky; | |
| 		l = kplus1 - j; | |
| /* Computing MAX */ | |
| 		i__4 = 1, i__2 = j - *k; | |
| 		i__3 = j - 1; | |
| 		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { | |
| 		    i__4 = iy; | |
| 		    i__2 = iy; | |
| 		    i__5 = l + i__ + j * a_dim1; | |
| 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,  | |
| 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] | |
| 			    .r; | |
| 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; | |
| 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i; | |
| 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | |
| 		    i__4 = ix; | |
| 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = | |
| 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r; | |
| 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | |
| 		    temp2.r = z__1.r, temp2.i = z__1.i; | |
| 		    ix += *incx; | |
| 		    iy += *incy; | |
| /* L70: */ | |
| 		} | |
| 		i__3 = jy; | |
| 		i__4 = jy; | |
| 		i__2 = kplus1 + j * a_dim1; | |
| 		d__1 = a[i__2].r; | |
| 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; | |
| 		z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i; | |
| 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; | |
| 		y[i__3].r = z__1.r, y[i__3].i = z__1.i; | |
| 		jx += *incx; | |
| 		jy += *incy; | |
| 		if (j > *k) { | |
| 		    kx += *incx; | |
| 		    ky += *incy; | |
| 		} | |
| /* L80: */ | |
| 	    } | |
| 	} | |
|     } else { | |
| 
 | |
| /*        Form  y  when lower triangle of A is stored. */ | |
| 
 | |
| 	if (*incx == 1 && *incy == 1) { | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__3 = j; | |
| 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = | |
| 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r; | |
| 		temp1.r = z__1.r, temp1.i = z__1.i; | |
| 		temp2.r = 0., temp2.i = 0.; | |
| 		i__3 = j; | |
| 		i__4 = j; | |
| 		i__2 = j * a_dim1 + 1; | |
| 		d__1 = a[i__2].r; | |
| 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; | |
| 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | |
| 		y[i__3].r = z__1.r, y[i__3].i = z__1.i; | |
| 		l = 1 - j; | |
| /* Computing MIN */ | |
| 		i__4 = *n, i__2 = j + *k; | |
| 		i__3 = min(i__4,i__2); | |
| 		for (i__ = j + 1; i__ <= i__3; ++i__) { | |
| 		    i__4 = i__; | |
| 		    i__2 = i__; | |
| 		    i__5 = l + i__ + j * a_dim1; | |
| 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,  | |
| 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] | |
| 			    .r; | |
| 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; | |
| 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i; | |
| 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | |
| 		    i__4 = i__; | |
| 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = | |
| 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r; | |
| 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | |
| 		    temp2.r = z__1.r, temp2.i = z__1.i; | |
| /* L90: */ | |
| 		} | |
| 		i__3 = j; | |
| 		i__4 = j; | |
| 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | |
| 		y[i__3].r = z__1.r, y[i__3].i = z__1.i; | |
| /* L100: */ | |
| 	    } | |
| 	} else { | |
| 	    jx = kx; | |
| 	    jy = ky; | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__3 = jx; | |
| 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = | |
| 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r; | |
| 		temp1.r = z__1.r, temp1.i = z__1.i; | |
| 		temp2.r = 0., temp2.i = 0.; | |
| 		i__3 = jy; | |
| 		i__4 = jy; | |
| 		i__2 = j * a_dim1 + 1; | |
| 		d__1 = a[i__2].r; | |
| 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; | |
| 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | |
| 		y[i__3].r = z__1.r, y[i__3].i = z__1.i; | |
| 		l = 1 - j; | |
| 		ix = jx; | |
| 		iy = jy; | |
| /* Computing MIN */ | |
| 		i__4 = *n, i__2 = j + *k; | |
| 		i__3 = min(i__4,i__2); | |
| 		for (i__ = j + 1; i__ <= i__3; ++i__) { | |
| 		    ix += *incx; | |
| 		    iy += *incy; | |
| 		    i__4 = iy; | |
| 		    i__2 = iy; | |
| 		    i__5 = l + i__ + j * a_dim1; | |
| 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,  | |
| 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] | |
| 			    .r; | |
| 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; | |
| 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i; | |
| 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); | |
| 		    i__4 = ix; | |
| 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = | |
| 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r; | |
| 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | |
| 		    temp2.r = z__1.r, temp2.i = z__1.i; | |
| /* L110: */ | |
| 		} | |
| 		i__3 = jy; | |
| 		i__4 = jy; | |
| 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | |
| 		y[i__3].r = z__1.r, y[i__3].i = z__1.i; | |
| 		jx += *incx; | |
| 		jy += *incy; | |
| /* L120: */ | |
| 	    } | |
| 	} | |
|     } | |
| 
 | |
|     return 0; | |
| 
 | |
| /*     End of ZHBMV . */ | |
| 
 | |
| } /* zhbmv_ */ | |
| 
 |