You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							317 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							317 lines
						
					
					
						
							10 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. Eigen itself is part of the KDE project. | |
| // | |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename SetterType,typename DenseType, typename Scalar, int Options> | |
| bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | |
| { | |
|   typedef SparseMatrix<Scalar,Options> SparseType; | |
|   { | |
|     sm.setZero(); | |
|     SetterType w(sm); | |
|     std::vector<Vector2i> remaining = nonzeroCoords; | |
|     while(!remaining.empty()) | |
|     { | |
|       int i = ei_random<int>(0,remaining.size()-1); | |
|       w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | |
|       remaining[i] = remaining.back(); | |
|       remaining.pop_back(); | |
|     } | |
|   } | |
|   return sm.isApprox(ref); | |
| } | |
| 
 | |
| template<typename SetterType,typename DenseType, typename T> | |
| bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | |
| { | |
|   sm.setZero(); | |
|   std::vector<Vector2i> remaining = nonzeroCoords; | |
|   while(!remaining.empty()) | |
|   { | |
|     int i = ei_random<int>(0,remaining.size()-1); | |
|     sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | |
|     remaining[i] = remaining.back(); | |
|     remaining.pop_back(); | |
|   } | |
|   return sm.isApprox(ref); | |
| } | |
| 
 | |
| template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) | |
| { | |
|   const int rows = ref.rows(); | |
|   const int cols = ref.cols(); | |
|   typedef typename SparseMatrixType::Scalar Scalar; | |
|   enum { Flags = SparseMatrixType::Flags }; | |
|    | |
|   double density = std::max(8./(rows*cols), 0.01); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   Scalar eps = 1e-6; | |
| 
 | |
|   SparseMatrixType m(rows, cols); | |
|   DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | |
|   DenseVector vec1 = DenseVector::Random(rows); | |
|   Scalar s1 = ei_random<Scalar>(); | |
| 
 | |
|   std::vector<Vector2i> zeroCoords; | |
|   std::vector<Vector2i> nonzeroCoords; | |
|   initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | |
|    | |
|   if (zeroCoords.size()==0 || nonzeroCoords.size()==0) | |
|     return; | |
| 
 | |
|   // test coeff and coeffRef | |
|   for (int i=0; i<(int)zeroCoords.size(); ++i) | |
|   { | |
|     VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | |
|     if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) | |
|       VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); | |
|   } | |
|   VERIFY_IS_APPROX(m, refMat); | |
| 
 | |
|   m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
|   refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | |
| 
 | |
|   VERIFY_IS_APPROX(m, refMat); | |
|   /* | |
|   // test InnerIterators and Block expressions | |
|   for (int t=0; t<10; ++t) | |
|   { | |
|     int j = ei_random<int>(0,cols-1); | |
|     int i = ei_random<int>(0,rows-1); | |
|     int w = ei_random<int>(1,cols-j-1); | |
|     int h = ei_random<int>(1,rows-i-1); | |
|  | |
| //     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); | |
|     for(int c=0; c<w; c++) | |
|     { | |
|       VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); | |
|       for(int r=0; r<h; r++) | |
|       { | |
| //         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); | |
|       } | |
|     } | |
| //     for(int r=0; r<h; r++) | |
| //     { | |
| //       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); | |
| //       for(int c=0; c<w; c++) | |
| //       { | |
| //         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); | |
| //       } | |
| //     } | |
|   } | |
|  | |
|   for(int c=0; c<cols; c++) | |
|   { | |
|     VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); | |
|     VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); | |
|   } | |
|  | |
|   for(int r=0; r<rows; r++) | |
|   { | |
|     VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); | |
|     VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); | |
|   } | |
|   */ | |
| 
 | |
|   // test SparseSetters | |
|   // coherent setter | |
|   // TODO extend the MatrixSetter | |
| //   { | |
| //     m.setZero(); | |
| //     VERIFY_IS_NOT_APPROX(m, refMat); | |
| //     SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m); | |
| //     for (int i=0; i<nonzeroCoords.size(); ++i) | |
| //     { | |
| //       w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); | |
| //     } | |
| //   } | |
| //   VERIFY_IS_APPROX(m, refMat); | |
|  | |
|   // random setter | |
| //   { | |
| //     m.setZero(); | |
| //     VERIFY_IS_NOT_APPROX(m, refMat); | |
| //     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); | |
| //     std::vector<Vector2i> remaining = nonzeroCoords; | |
| //     while(!remaining.empty()) | |
| //     { | |
| //       int i = ei_random<int>(0,remaining.size()-1); | |
| //       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); | |
| //       remaining[i] = remaining.back(); | |
| //       remaining.pop_back(); | |
| //     } | |
| //   } | |
| //   VERIFY_IS_APPROX(m, refMat); | |
|  | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #ifdef EIGEN_UNORDERED_MAP_SUPPORT | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|     #ifdef _DENSE_HASH_MAP_H_ | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|     #ifdef _SPARSE_HASH_MAP_H_ | |
|     VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); | |
|     #endif | |
|  | |
|     // test fillrand | |
|     { | |
|       DenseMatrix m1(rows,cols); | |
|       m1.setZero(); | |
|       SparseMatrixType m2(rows,cols); | |
|       m2.startFill(); | |
|       for (int j=0; j<cols; ++j) | |
|       { | |
|         for (int k=0; k<rows/2; ++k) | |
|         { | |
|           int i = ei_random<int>(0,rows-1); | |
|           if (m1.coeff(i,j)==Scalar(0)) | |
|             m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); | |
|         } | |
|       } | |
|       m2.endFill(); | |
|       VERIFY_IS_APPROX(m2,m1); | |
|     } | |
|    | |
|   // test RandomSetter | |
|   /*{ | |
|     SparseMatrixType m1(rows,cols), m2(rows,cols); | |
|     DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | |
|     initSparse<Scalar>(density, refM1, m1); | |
|     { | |
|       Eigen::RandomSetter<SparseMatrixType > setter(m2); | |
|       for (int j=0; j<m1.outerSize(); ++j) | |
|         for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) | |
|           setter(i.index(), j) = i.value(); | |
|     } | |
|     VERIFY_IS_APPROX(m1, m2); | |
|   }*/ | |
| //   std::cerr << m.transpose() << "\n\n"  << refMat.transpose() << "\n\n"; | |
| //   VERIFY_IS_APPROX(m, refMat); | |
|  | |
|   // test basic computations | |
|   { | |
|     DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); | |
|     DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m1(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     SparseMatrixType m3(rows, rows); | |
|     SparseMatrixType m4(rows, rows); | |
|     initSparse<Scalar>(density, refM1, m1); | |
|     initSparse<Scalar>(density, refM2, m2); | |
|     initSparse<Scalar>(density, refM3, m3); | |
|     initSparse<Scalar>(density, refM4, m4); | |
| 
 | |
|     VERIFY_IS_APPROX(m1+m2, refM1+refM2); | |
|     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); | |
|     VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); | |
|     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); | |
| 
 | |
|     VERIFY_IS_APPROX(m1*=s1, refM1*=s1); | |
|     VERIFY_IS_APPROX(m1/=s1, refM1/=s1); | |
|      | |
|     VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); | |
|     VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); | |
|      | |
|     VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); | |
|      | |
|     refM4.setRandom(); | |
|     // sparse cwise* dense | |
|     VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); | |
| //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); | |
|   } | |
| 
 | |
|   // test innerVector() | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     int j0 = ei_random(0,rows-1); | |
|     int j1 = ei_random(0,rows-1); | |
|     VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); | |
|     VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); | |
|     //m2.innerVector(j0) = 2*m2.innerVector(j1); | |
|     //refMat2.col(j0) = 2*refMat2.col(j1); | |
|     //VERIFY_IS_APPROX(m2, refMat2); | |
|   } | |
|    | |
|   // test innerVectors() | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     int j0 = ei_random(0,rows-2); | |
|     int j1 = ei_random(0,rows-2); | |
|     int n0 = ei_random<int>(1,rows-std::max(j0,j1)); | |
|     VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); | |
|     VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | |
|                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | |
|     //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); | |
|     //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); | |
|   } | |
| 
 | |
|   // test transpose | |
|   { | |
|     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | |
|     SparseMatrixType m2(rows, rows); | |
|     initSparse<Scalar>(density, refMat2, m2); | |
|     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); | |
|     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); | |
|   } | |
|    | |
|   // test prune | |
|   { | |
|     SparseMatrixType m2(rows, rows); | |
|     DenseMatrix refM2(rows, rows); | |
|     refM2.setZero(); | |
|     int countFalseNonZero = 0; | |
|     int countTrueNonZero = 0; | |
|     m2.startFill(); | |
|     for (int j=0; j<m2.outerSize(); ++j) | |
|       for (int i=0; i<m2.innerSize(); ++i) | |
|       { | |
|         float x = ei_random<float>(0,1); | |
|         if (x<0.1) | |
|         { | |
|           // do nothing | |
|         } | |
|         else if (x<0.5) | |
|         { | |
|           countFalseNonZero++; | |
|           m2.fill(i,j) = Scalar(0); | |
|         } | |
|         else | |
|         { | |
|           countTrueNonZero++; | |
|           m2.fill(i,j) = refM2(i,j) = Scalar(1); | |
|         } | |
|       } | |
|     m2.endFill(); | |
|     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); | |
|     VERIFY_IS_APPROX(m2, refM2); | |
|     m2.prune(1); | |
|     VERIFY(countTrueNonZero==m2.nonZeros()); | |
|     VERIFY_IS_APPROX(m2, refM2); | |
|   } | |
| } | |
| 
 | |
| void test_eigen2_sparse_basic() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); | |
|     CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); | |
|     CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); | |
|      | |
|     CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); | |
|   } | |
| }
 |