#include #include #include #include #include #include #include #ifdef HAVE_PROFILER #include #endif #include #include /* Configuration */ static int report_levels = 0; // report states at end of every level static int report_table = 0; // report table size at end of every level static int report_nodes = 0; // report number of nodes of BDDs static int strategy = 1; // set to 1 = use PAR strategy; set to 0 = use BFS strategy static int check_deadlocks = 0; // set to 1 to check for deadlocks static int merge_relations = 0; // merge relations to 1 relation static int print_transition_matrix = 0; // print transition relation matrix static int workers = 0; // autodetect static char* model_filename = NULL; // filename of model #ifdef HAVE_PROFILER static char* profile_filename = NULL; // filename for profiling #endif /* argp configuration */ static struct argp_option options[] = { {"workers", 'w', "", 0, "Number of workers (default=0: autodetect)", 0}, {"strategy", 's', "", 0, "Strategy for reachability (default=par)", 0}, #ifdef HAVE_PROFILER {"profiler", 'p', "", 0, "Filename for profiling", 0}, #endif {"deadlocks", 3, 0, 0, "Check for deadlocks", 1}, {"count-nodes", 5, 0, 0, "Report #nodes for BDDs", 1}, {"count-states", 1, 0, 0, "Report #states at each level", 1}, {"count-table", 2, 0, 0, "Report table usage at each level", 1}, {"merge-relations", 6, 0, 0, "Merge transition relations into one transition relation", 1}, {"print-matrix", 4, 0, 0, "Print transition matrix", 1}, {0, 0, 0, 0, 0, 0} }; static error_t parse_opt(int key, char *arg, struct argp_state *state) { switch (key) { case 'w': workers = atoi(arg); break; case 's': if (strcmp(arg, "bfs")==0) strategy = 0; else if (strcmp(arg, "par")==0) strategy = 1; else if (strcmp(arg, "sat")==0) strategy = 2; else argp_usage(state); break; case 4: print_transition_matrix = 1; break; case 3: check_deadlocks = 1; break; case 1: report_levels = 1; break; case 2: report_table = 1; break; case 6: merge_relations = 1; break; #ifdef HAVE_PROFILER case 'p': profile_filename = arg; break; #endif case ARGP_KEY_ARG: if (state->arg_num >= 1) argp_usage(state); model_filename = arg; break; case ARGP_KEY_END: if (state->arg_num < 1) argp_usage(state); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static struct argp argp = { options, parse_opt, "", 0, 0, 0, 0 }; /* Globals */ typedef struct set { BDD bdd; BDD variables; // all variables in the set (used by satcount) } *set_t; typedef struct relation { BDD bdd; BDD variables; // all variables in the relation (used by relprod) } *rel_t; static int vector_size; // size of vector static int statebits, actionbits; // number of bits for state, number of bits for action static int bits_per_integer; // number of bits per integer in the vector static int next_count; // number of partitions of the transition relation static rel_t *next; // each partition of the transition relation /* Obtain current wallclock time */ static double wctime() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + 1E-6 * tv.tv_usec); } static double t_start; #define INFO(s, ...) fprintf(stdout, "[% 8.2f] " s, wctime()-t_start, ##__VA_ARGS__) #define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); } /* Load a set from file */ #define set_load(f) CALL(set_load, f) TASK_1(set_t, set_load, FILE*, f) { sylvan_serialize_fromfile(f); size_t set_bdd, set_vector_size, set_state_vars; if ((fread(&set_bdd, sizeof(size_t), 1, f) != 1) || (fread(&set_vector_size, sizeof(size_t), 1, f) != 1) || (fread(&set_state_vars, sizeof(size_t), 1, f) != 1)) { Abort("Invalid input file!\n"); } set_t set = (set_t)malloc(sizeof(struct set)); set->bdd = sylvan_serialize_get_reversed(set_bdd); set->variables = sylvan_support(sylvan_serialize_get_reversed(set_state_vars)); sylvan_protect(&set->bdd); sylvan_protect(&set->variables); return set; } /* Load a relation from file */ #define rel_load(f) CALL(rel_load, f) TASK_1(rel_t, rel_load, FILE*, f) { sylvan_serialize_fromfile(f); size_t rel_bdd, rel_vars; if ((fread(&rel_bdd, sizeof(size_t), 1, f) != 1) || (fread(&rel_vars, sizeof(size_t), 1, f) != 1)) { Abort("Invalid input file!\n"); } rel_t rel = (rel_t)malloc(sizeof(struct relation)); rel->bdd = sylvan_serialize_get_reversed(rel_bdd); rel->variables = sylvan_support(sylvan_serialize_get_reversed(rel_vars)); sylvan_protect(&rel->bdd); sylvan_protect(&rel->variables); return rel; } #define print_example(example, variables) CALL(print_example, example, variables) VOID_TASK_2(print_example, BDD, example, BDDSET, variables) { uint8_t str[vector_size * bits_per_integer]; if (example != sylvan_false) { sylvan_sat_one(example, variables, str); printf("["); for (int i=0; i0) printf(","); printf("%" PRIu32, res); } printf("]"); } } /* Straight-forward implementation of parallel reduction */ TASK_5(BDD, go_par, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited) BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables); bdd_refs_push(succ); if (deadlocks) { // check which BDDs in deadlocks do not have a successor in this relation BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables); bdd_refs_push(anc); *deadlocks = sylvan_diff(*deadlocks, anc); bdd_refs_pop(1); } BDD result = sylvan_diff(succ, visited); bdd_refs_pop(1); return result; } else { BDD deadlocks_left; BDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; sylvan_protect(&deadlocks_left); sylvan_protect(&deadlocks_right); } // Recursively calculate left+right bdd_refs_spawn(SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL)); BDD right = bdd_refs_push(CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL)); BDD left = bdd_refs_push(bdd_refs_sync(SYNC(go_par))); // Merge results of left+right BDD result = sylvan_or(left, right); bdd_refs_pop(2); if (deadlocks) { bdd_refs_push(result); *deadlocks = sylvan_and(deadlocks_left, deadlocks_right); sylvan_unprotect(&deadlocks_left); sylvan_unprotect(&deadlocks_right); bdd_refs_pop(1); } return result; } } /* PAR strategy, parallel strategy (operations called in parallel *and* parallelized by Sylvan) */ VOID_TASK_1(par, set_t, set) { BDD visited = set->bdd; BDD next_level = visited; BDD cur_level = sylvan_false; BDD deadlocks = sylvan_false; sylvan_protect(&visited); sylvan_protect(&next_level); sylvan_protect(&cur_level); sylvan_protect(&deadlocks); int iteration = 1; do { // calculate successors in parallel cur_level = next_level; deadlocks = cur_level; next_level = CALL(go_par, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); if (check_deadlocks && deadlocks != sylvan_false) { INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables)); if (deadlocks != sylvan_false) { printf("example: "); print_example(deadlocks, set->variables); check_deadlocks = 0; } printf("\n"); } // visited = visited + new visited = sylvan_or(visited, next_level); if (report_table && report_levels) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n", iteration, sylvan_satcount(visited, set->variables), 100.0*(double)filled/total, filled); } else if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n", iteration, 100.0*(double)filled/total, filled); } else if (report_levels) { INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables)); } else { INFO("Level %d done\n", iteration); } iteration++; } while (next_level != sylvan_false); set->bdd = visited; sylvan_unprotect(&visited); sylvan_unprotect(&next_level); sylvan_unprotect(&cur_level); sylvan_unprotect(&deadlocks); } /* Sequential version of merge-reduction */ TASK_5(BDD, go_bfs, BDD, cur, BDD, visited, size_t, from, size_t, len, BDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited) BDD succ = sylvan_relnext(cur, next[from]->bdd, next[from]->variables); bdd_refs_push(succ); if (deadlocks) { // check which BDDs in deadlocks do not have a successor in this relation BDD anc = sylvan_relprev(next[from]->bdd, succ, next[from]->variables); bdd_refs_push(anc); *deadlocks = sylvan_diff(*deadlocks, anc); bdd_refs_pop(1); } BDD result = sylvan_diff(succ, visited); bdd_refs_pop(1); return result; } else { BDD deadlocks_left; BDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; sylvan_protect(&deadlocks_left); sylvan_protect(&deadlocks_right); } // Recursively calculate left+right BDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL); bdd_refs_push(left); BDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL); bdd_refs_push(right); // Merge results of left+right BDD result = sylvan_or(left, right); bdd_refs_pop(2); if (deadlocks) { bdd_refs_push(result); *deadlocks = sylvan_and(deadlocks_left, deadlocks_right); sylvan_unprotect(&deadlocks_left); sylvan_unprotect(&deadlocks_right); bdd_refs_pop(1); } return result; } } /* BFS strategy, sequential strategy (but operations are parallelized by Sylvan) */ VOID_TASK_1(bfs, set_t, set) { BDD visited = set->bdd; BDD next_level = visited; BDD cur_level = sylvan_false; BDD deadlocks = sylvan_false; sylvan_protect(&visited); sylvan_protect(&next_level); sylvan_protect(&cur_level); sylvan_protect(&deadlocks); int iteration = 1; do { // calculate successors in parallel cur_level = next_level; deadlocks = cur_level; next_level = CALL(go_bfs, cur_level, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); if (check_deadlocks && deadlocks != sylvan_false) { INFO("Found %'0.0f deadlock states... ", sylvan_satcount(deadlocks, set->variables)); if (deadlocks != sylvan_false) { printf("example: "); print_example(deadlocks, set->variables); check_deadlocks = 0; } printf("\n"); } // visited = visited + new visited = sylvan_or(visited, next_level); if (report_table && report_levels) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, %'0.0f states explored, table: %0.1f%% full (%'zu nodes)\n", iteration, sylvan_satcount(visited, set->variables), 100.0*(double)filled/total, filled); } else if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); INFO("Level %d done, table: %0.1f%% full (%'zu nodes)\n", iteration, 100.0*(double)filled/total, filled); } else if (report_levels) { INFO("Level %d done, %'0.0f states explored\n", iteration, sylvan_satcount(visited, set->variables)); } else { INFO("Level %d done\n", iteration); } iteration++; } while (next_level != sylvan_false); set->bdd = visited; sylvan_unprotect(&visited); sylvan_unprotect(&next_level); sylvan_unprotect(&cur_level); sylvan_unprotect(&deadlocks); } /** * Extend a transition relation to a larger domain (using s=s') */ #define extend_relation(rel, vars) CALL(extend_relation, rel, vars) TASK_2(BDD, extend_relation, BDD, relation, BDDSET, variables) { /* first determine which state BDD variables are in rel */ int has[statebits]; for (int i=0; i= (unsigned)statebits) break; // action labels has[v/2] = 1; s = sylvan_set_next(s); } /* create "s=s'" for all variables not in rel */ BDD eq = sylvan_true; for (int i=statebits-1; i>=0; i--) { if (has[i]) continue; BDD low = sylvan_makenode(2*i+1, eq, sylvan_false); bdd_refs_push(low); BDD high = sylvan_makenode(2*i+1, sylvan_false, eq); bdd_refs_pop(1); eq = sylvan_makenode(2*i, low, high); } bdd_refs_push(eq); BDD result = sylvan_and(relation, eq); bdd_refs_pop(1); return result; } /** * Compute \BigUnion ( sets[i] ) */ #define big_union(first, count) CALL(big_union, first, count) TASK_2(BDD, big_union, int, first, int, count) { if (count == 1) return next[first]->bdd; bdd_refs_spawn(SPAWN(big_union, first, count/2)); BDD right = bdd_refs_push(CALL(big_union, first+count/2, count-count/2)); BDD left = bdd_refs_push(bdd_refs_sync(SYNC(big_union))); BDD result = sylvan_or(left, right); bdd_refs_pop(2); return result; } static void print_matrix(BDD vars) { for (int i=0; i= next_s) break; } } else { fprintf(stdout, "-"); } } } } VOID_TASK_0(gc_start) { INFO("(GC) Starting garbage collection...\n"); } VOID_TASK_0(gc_end) { INFO("(GC) Garbage collection done.\n"); } int main(int argc, char **argv) { argp_parse(&argp, argc, argv, 0, 0, 0); setlocale(LC_NUMERIC, "en_US.utf-8"); t_start = wctime(); FILE *f = fopen(model_filename, "r"); if (f == NULL) { fprintf(stderr, "Cannot open file '%s'!\n", model_filename); return -1; } // Init Lace lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup LACE_ME; // Init Sylvan // Nodes table size: 24 bytes * 2**N_nodes // Cache table size: 36 bytes * 2**N_cache // With: N_nodes=25, N_cache=24: 1.3 GB memory sylvan_init_package(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26); sylvan_init_bdd(6); // granularity 6 is decent default value - 1 means "use cache for every operation" sylvan_gc_add_mark(0, TASK(gc_start)); sylvan_gc_add_mark(40, TASK(gc_end)); /* Load domain information */ if ((fread(&vector_size, sizeof(int), 1, f) != 1) || (fread(&statebits, sizeof(int), 1, f) != 1) || (fread(&actionbits, sizeof(int), 1, f) != 1)) { Abort("Invalid input file!\n"); } bits_per_integer = statebits; statebits *= vector_size; // Read initial state set_t states = set_load(f); // Read transitions if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); next = (rel_t*)malloc(sizeof(rel_t) * next_count); int i; for (i=0; ivariables); fprintf(stdout, "\n"); } } // Report statistics INFO("Read file '%s'\n", model_filename); INFO("%d integers per state, %d bits per integer, %d transition groups\n", vector_size, bits_per_integer, next_count); if (merge_relations) { BDD prime_variables = sylvan_set_empty(); for (int i=statebits-1; i>=0; i--) { bdd_refs_push(prime_variables); prime_variables = sylvan_set_add(prime_variables, i*2+1); bdd_refs_pop(1); } bdd_refs_push(prime_variables); INFO("Extending transition relations to full domain.\n"); for (int i=0; ibdd = extend_relation(next[i]->bdd, next[i]->variables); next[i]->variables = prime_variables; } INFO("Taking union of all transition relations.\n"); next[0]->bdd = big_union(0, next_count); next_count = 1; } if (report_nodes) { INFO("BDD nodes:\n"); INFO("Initial states: %zu BDD nodes\n", sylvan_nodecount(states->bdd)); for (i=0; ibdd)); } } #ifdef HAVE_PROFILER if (profile_filename != NULL) ProfilerStart(profile_filename); #endif if (strategy == 1) { double t1 = wctime(); CALL(par, states); double t2 = wctime(); INFO("PAR Time: %f\n", t2-t1); } else { double t1 = wctime(); CALL(bfs, states); double t2 = wctime(); INFO("BFS Time: %f\n", t2-t1); } #ifdef HAVE_PROFILER if (profile_filename != NULL) ProfilerStop(); #endif // Now we just have states INFO("Final states: %'0.0f states\n", sylvan_satcount(states->bdd, states->variables)); if (report_nodes) { INFO("Final states: %'zu BDD nodes\n", sylvan_nodecount(states->bdd)); } sylvan_stats_report(stdout, 1); return 0; }