#include "storm/modelchecker/prctl/SparseMdpPrctlModelChecker.h" #include <sstream> #include "storm/utility/constants.h" #include "storm/utility/macros.h" #include "storm/utility/vector.h" #include "storm/utility/graph.h" #include "storm/utility/FilteredRewardModel.h" #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "storm/modelchecker/results/ExplicitParetoCurveCheckResult.h" #include "storm/logic/FragmentSpecification.h" #include "storm/transformer/DAProductBuilder.h" #include "storm/logic/ExtractMaximalStateFormulasVisitor.h" #include "storm/automata/LTL2DeterministicAutomaton.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.h" #include "storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h" #include "storm/modelchecker/helper/finitehorizon/SparseNondeterministicStepBoundedHorizonHelper.h" #include "storm/modelchecker/helper/ltl/SparseLTLHelper.h" #include "storm/modelchecker/helper/utility/SetInformationFromCheckTask.h" #include "storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h" #include "storm/modelchecker/multiobjective/multiObjectiveModelChecking.h" #include "storm/solver/SolveGoal.h" #include "storm/storage/BitVector.h" #include "storm/shields/ShieldHandling.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/GeneralSettings.h" #include "storm/settings/modules/DebugSettings.h" #include "storm/exceptions/InvalidStateException.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/storage/expressions/Expressions.h" #include "storm/storage/MaximalEndComponentDecomposition.h" #include "storm/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { template<typename SparseMdpModelType> SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model) : SparsePropositionalModelChecker<SparseMdpModelType>(model) { // Intentionally left empty. } template<typename SparseMdpModelType> bool SparseMdpPrctlModelChecker<SparseMdpModelType>::canHandleStatic(CheckTask<storm::logic::Formula, ValueType> const& checkTask, bool* requiresSingleInitialState) { storm::logic::Formula const& formula = checkTask.getFormula(); if (formula.isInFragment(storm::logic::prctlstar().setLongRunAverageRewardFormulasAllowed(true).setLongRunAverageProbabilitiesAllowed(true).setConditionalProbabilityFormulasAllowed(true).setOnlyEventuallyFormuluasInConditionalFormulasAllowed(true).setTotalRewardFormulasAllowed(true).setRewardBoundedUntilFormulasAllowed(true).setRewardBoundedCumulativeRewardFormulasAllowed(true).setMultiDimensionalBoundedUntilFormulasAllowed(true).setMultiDimensionalCumulativeRewardFormulasAllowed(true).setTimeOperatorsAllowed(true).setReachbilityTimeFormulasAllowed(true).setRewardAccumulationAllowed(true))) { return true; } else if (checkTask.isOnlyInitialStatesRelevantSet()) { auto multiObjectiveFragment = storm::logic::multiObjective().setCumulativeRewardFormulasAllowed(true).setTimeBoundedCumulativeRewardFormulasAllowed(true).setStepBoundedCumulativeRewardFormulasAllowed(true).setRewardBoundedCumulativeRewardFormulasAllowed(true).setTimeBoundedUntilFormulasAllowed(true).setStepBoundedUntilFormulasAllowed(true).setRewardBoundedUntilFormulasAllowed(true).setMultiDimensionalBoundedUntilFormulasAllowed(true).setMultiDimensionalCumulativeRewardFormulasAllowed(true).setRewardAccumulationAllowed(true); if (formula.isInFragment(multiObjectiveFragment) || formula.isInFragment(storm::logic::quantiles())) { if (requiresSingleInitialState) { *requiresSingleInitialState = true; } return true; } } return false; } template<typename SparseMdpModelType> bool SparseMdpPrctlModelChecker<SparseMdpModelType>::canHandle(CheckTask<storm::logic::Formula, ValueType> const& checkTask) const { bool requiresSingleInitialState = false; if (canHandleStatic(checkTask, &requiresSingleInitialState)) { return !requiresSingleInitialState || this->getModel().getInitialStates().getNumberOfSetBits() == 1; } else { return false; } } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeBoundedUntilProbabilities(Environment const& env, CheckTask<storm::logic::BoundedUntilFormula, ValueType> const& checkTask) { storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); if (pathFormula.isMultiDimensional() || pathFormula.getTimeBoundReference().isRewardBound()) { STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::InvalidOperationException, "Checking non-trivial bounded until probabilities can only be computed for the initial states of the model."); STORM_LOG_WARN_COND(!checkTask.isQualitativeSet(), "Checking non-trivial bounded until formulas is not optimized w.r.t. qualitative queries"); storm::logic::OperatorInformation opInfo(checkTask.getOptimizationDirection()); if (checkTask.isBoundSet()) { opInfo.bound = checkTask.getBound(); } auto formula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(checkTask.getFormula().asSharedPointer(), opInfo); helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula); auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(env, checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates()); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } else { STORM_LOG_THROW(pathFormula.hasUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have (a single) upper step bound."); STORM_LOG_THROW(pathFormula.hasIntegerLowerBound(), storm::exceptions::InvalidPropertyException, "Formula lower step bound must be discrete/integral."); STORM_LOG_THROW(pathFormula.hasIntegerUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have discrete upper time bound."); std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); storm::modelchecker::helper::SparseNondeterministicStepBoundedHorizonHelper<ValueType> helper; std::vector<ValueType> numericResult; //This works only with empty vectors, no nullptr storm::storage::BitVector resultMaybeStates; std::vector<ValueType> choiceValues; numericResult = helper.compute(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getNonStrictLowerBound<uint64_t>(), pathFormula.getNonStrictUpperBound<uint64_t>(), checkTask.getHint(), resultMaybeStates, choiceValues); if(checkTask.isShieldingTask()) { tempest::shields::createShield<ValueType>(std::make_shared<storm::models::sparse::Mdp<ValueType>>(this->getModel()), std::move(choiceValues), checkTask.getShieldingExpression(), checkTask.getOptimizationDirection(), std::move(resultMaybeStates), storm::storage::BitVector(resultMaybeStates.size(), true)); } return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeNextProbabilities(Environment const& env, CheckTask<storm::logic::NextFormula, ValueType> const& checkTask) { storm::logic::NextFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, pathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeNextProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if(checkTask.isShieldingTask()) { tempest::shields::createShield<ValueType>(std::make_shared<storm::models::sparse::Mdp<ValueType>>(this->getModel()), std::move(ret.choiceValues), checkTask.getShieldingExpression(), checkTask.getOptimizationDirection(), std::move(ret.maybeStates), storm::storage::BitVector(ret.maybeStates.size(), true)); } else if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilities(Environment const& env, CheckTask<storm::logic::UntilFormula, ValueType> const& checkTask) { storm::logic::UntilFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet(), checkTask.getHint()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if(checkTask.isShieldingTask()) { tempest::shields::createShield<ValueType>(std::make_shared<storm::models::sparse::Mdp<ValueType>>(this->getModel()), std::move(ret.choiceValues), checkTask.getShieldingExpression(), checkTask.getOptimizationDirection(), std::move(ret.maybeStates), storm::storage::BitVector(ret.maybeStates.size(), true)); } else if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeGloballyProbabilities(Environment const& env, CheckTask<storm::logic::GloballyFormula, ValueType> const& checkTask) { storm::logic::GloballyFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, pathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeGloballyProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if(checkTask.isShieldingTask()) { tempest::shields::createShield<ValueType>(std::make_shared<storm::models::sparse::Mdp<ValueType>>(this->getModel()), std::move(ret.choiceValues), checkTask.getShieldingExpression(), checkTask.getOptimizationDirection(),subResult.getTruthValuesVector(), storm::storage::BitVector(ret.maybeStates.size(), true)); } else if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeStateFormulaProbabilities(Environment const& env, CheckTask<storm::logic::Formula, ValueType> const& checkTask) { storm::logic::Formula const& formula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> resultPointer = this->check(env, formula); ExplicitQualitativeCheckResult const& result = resultPointer->asExplicitQualitativeCheckResult(); return std::make_unique<ExplicitQuantitativeCheckResult<ValueType>>(result); } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLTLProbabilities(Environment const& env, CheckTask<storm::logic::PathFormula, ValueType> const& checkTask) { storm::logic::PathFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::vector<storm::logic::ExtractMaximalStateFormulasVisitor::LabelFormulaPair> extracted; std::shared_ptr<storm::logic::Formula> ltlFormula = storm::logic::ExtractMaximalStateFormulasVisitor::extract(pathFormula, extracted); STORM_LOG_INFO("Extracting maximal state formulas and computing satisfaction sets for path formula: " << pathFormula); std::map<std::string, storm::storage::BitVector> apSets; std::map<std::string, std::string> substitution; // TODO Maintain a mapping from APsets to labels in order to use the same label for the same formulas std::map<storm::storage::BitVector, std::string> labels; for (auto& p : extracted) { STORM_LOG_INFO(" Computing satisfaction set for atomic proposition \"" << p.first << "\" <=> " << *p.second << "..."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, *p.second); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto sat = subResult.getTruthValuesVector(); STORM_LOG_INFO(" Atomic proposition \"" << p.first << "\" is satisfied by " << sat.getNumberOfSetBits() << " states."); auto occ = labels.find(sat); if(occ != labels.end()){ // Reuse AP STORM_LOG_INFO(" Atomic proposition \"" << p.first << "\" is equivalent to " << occ->second << ", substituting..."); substitution[p.first] = occ->second; continue; } /*// equivalent to !pi occ = labels.find(~sat); if(occ != labels.end()){ // Reuse negated AP STORM_LOG_INFO(" Atomic proposition \"" << p.first << "\" is equivalent to !" << occ->second << ", substituting..."); substitution[p.first] = todo: ! occ->second; continue; } */ labels[sat] = p.first; apSets[p.first] = std::move(sat); STORM_LOG_INFO(" Atomic proposition \"" << p.first << "\" is satisfied by " << sat.getNumberOfSetBits() << " states."); } ltlFormula = ltlFormula->substitute(substitution); const SparseMdpModelType& mdp = this->getModel(); // TODO if (storm::settings::getModule<storm::settings::modules::DebugSettings>().isTraceSet()) { STORM_LOG_TRACE("Writing model to model.dot"); std::ofstream modelDot("model.dot"); this->getModel().writeDotToStream(modelDot); modelDot.close(); } storm::modelchecker::helper::SparseLTLHelper<ValueType, true> helper(mdp.getTransitionMatrix(), this->getModel().getNumberOfStates()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, mdp); std::vector<ValueType> numericResult = helper.computeLTLProbabilities(env, *ltlFormula, apSets); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeConditionalProbabilities(Environment const& env, CheckTask<storm::logic::ConditionalFormula, ValueType> const& checkTask) { storm::logic::ConditionalFormula const& conditionalFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::InvalidPropertyException, "Cannot compute conditional probabilities on MDPs with more than one initial state."); STORM_LOG_THROW(conditionalFormula.getSubformula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Illegal conditional probability formula."); STORM_LOG_THROW(conditionalFormula.getConditionFormula().isEventuallyFormula(), storm::exceptions::InvalidPropertyException, "Illegal conditional probability formula."); std::unique_ptr<CheckResult> leftResultPointer = this->check(env, conditionalFormula.getSubformula().asEventuallyFormula().getSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(env, conditionalFormula.getConditionFormula().asEventuallyFormula().getSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); return storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeConditionalProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector()); } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeCumulativeRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::CumulativeRewardFormula, ValueType> const& checkTask) { storm::logic::CumulativeRewardFormula const& rewardPathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); if (rewardPathFormula.isMultiDimensional() || rewardPathFormula.getTimeBoundReference().isRewardBound()) { STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::InvalidOperationException, "Checking reward bounded cumulative reward formulas can only be done for the initial states of the model."); STORM_LOG_THROW(!checkTask.getFormula().hasRewardAccumulation(), storm::exceptions::InvalidOperationException, "Checking reward bounded cumulative reward formulas is not supported if reward accumulations are given."); STORM_LOG_WARN_COND(!checkTask.isQualitativeSet(), "Checking reward bounded until formulas is not optimized w.r.t. qualitative queries"); storm::logic::OperatorInformation opInfo(checkTask.getOptimizationDirection()); if (checkTask.isBoundSet()) { opInfo.bound = checkTask.getBound(); } auto formula = std::make_shared<storm::logic::RewardOperatorFormula>(checkTask.getFormula().asSharedPointer(), checkTask.getRewardModel(), opInfo); helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula); auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(env, checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates()); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } else { STORM_LOG_THROW(rewardPathFormula.hasIntegerBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have a discrete time bound."); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeCumulativeRewards(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), rewardModel.get(), rewardPathFormula.getNonStrictBound<uint64_t>()); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeInstantaneousRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::InstantaneousRewardFormula, ValueType> const& checkTask) { storm::logic::InstantaneousRewardFormula const& rewardPathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(rewardPathFormula.hasIntegerBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have a discrete time bound."); std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeInstantaneousRewards(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), checkTask.isRewardModelSet() ? this->getModel().getRewardModel(checkTask.getRewardModel()) : this->getModel().getRewardModel(""), rewardPathFormula.getBound<uint64_t>()); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeReachabilityRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) { storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), rewardModel.get(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet(), checkTask.getHint()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeReachabilityTimes(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) { storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeReachabilityTimes(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet(), checkTask.getHint()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeTotalRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::TotalRewardFormula, ValueType> const& checkTask) { STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); auto ret = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeTotalRewards(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), rewardModel.get(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet(), checkTask.getHint()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) { storm::logic::StateFormula const& stateFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel()); auto values = helper.computeLongRunAverageProbabilities(env, subResult.getTruthValuesVector()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values))); if (checkTask.isProduceSchedulersSet()) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler())); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverageRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula, ValueType> const& checkTask) { STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel()); auto values = helper.computeLongRunAverageRewards(env, rewardModel.get()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values))); if (checkTask.isProduceSchedulersSet()) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler())); } return result; } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::checkMultiObjectiveFormula(Environment const& env, CheckTask<storm::logic::MultiObjectiveFormula, ValueType> const& checkTask) { return multiobjective::performMultiObjectiveModelChecking(env, this->getModel(), checkTask.getFormula()); } template<typename SparseMdpModelType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::checkQuantileFormula(Environment const& env, CheckTask<storm::logic::QuantileFormula, ValueType> const& checkTask) { STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::InvalidOperationException, "Computing quantiles is only supported for the initial states of a model."); STORM_LOG_THROW(this->getModel().getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::InvalidOperationException, "Quantiles not supported on models with multiple initial states."); uint64_t initialState = *this->getModel().getInitialStates().begin(); helper::rewardbounded::QuantileHelper<SparseMdpModelType> qHelper(this->getModel(), checkTask.getFormula()); auto res = qHelper.computeQuantile(env); if (res.size() == 1 && res.front().size() == 1) { return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, std::move(res.front().front()))); } else { return std::unique_ptr<CheckResult>(new ExplicitParetoCurveCheckResult<ValueType>(initialState, std::move(res))); } } template class SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>; #ifdef STORM_HAVE_CARL template class SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<storm::RationalNumber>>; #endif } }