#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h" #include <vector> #include "src/utility/ConstantsComparator.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/modelchecker/ExplicitQualitativeCheckResult.h" #include "src/modelchecker/ExplicitQuantitativeCheckResult.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { template<typename ValueType> SparseMdpPrctlModelChecker<ValueType>::SparseMdpPrctlModelChecker(storm::models::Mdp<ValueType> const& model) : model(model), nondeterministicLinearEquationSolver(storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>()) { // Intentionally left empty. } template<typename ValueType> SparseMdpPrctlModelChecker<ValueType>::SparseMdpPrctlModelChecker(storm::models::Mdp<ValueType> const& model, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver) : model(model), nondeterministicLinearEquationSolver(nondeterministicLinearEquationSolver) { // Intentionally left empty. } template<typename ValueType> bool SparseMdpPrctlModelChecker<ValueType>::canHandle(storm::logic::Formula const& formula) const { return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula(); } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const { std::vector<ValueType> result(model.getNumberOfStates(), storm::utility::zero<ValueType>()); // Determine the states that have 0 probability of reaching the target states. storm::storage::BitVector statesWithProbabilityGreater0; if (minimize) { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates, true, stepBound); } else { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates, true, stepBound); } STORM_LOG_INFO("Found " << statesWithProbabilityGreater0.getNumberOfSetBits() << " 'maybe' states."); if (!statesWithProbabilityGreater0.empty()) { // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(true, statesWithProbabilityGreater0, statesWithProbabilityGreater0, false); // Compute the new set of target states in the reduced system. storm::storage::BitVector rightStatesInReducedSystem = psiStates % statesWithProbabilityGreater0; // Make all rows absorbing that satisfy the second sub-formula. submatrix.makeRowGroupsAbsorbing(rightStatesInReducedSystem); // Create the vector with which to multiply. std::vector<ValueType> subresult(statesWithProbabilityGreater0.getNumberOfSetBits()); storm::utility::vector::setVectorValues(subresult, rightStatesInReducedSystem, storm::utility::one<ValueType>()); STORM_LOG_THROW(nondeterministicLinearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid equation solver available."); this->nondeterministicLinearEquationSolver->performMatrixVectorMultiplication(minimize, submatrix, subresult, nullptr, stepBound); // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, subresult); storm::utility::vector::setVectorValues(result, ~statesWithProbabilityGreater0, storm::utility::zero<ValueType>()); } return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult& leftResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*leftResultPointer); ExplicitQualitativeCheckResult& rightResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*rightResultPointer); std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, leftResult.getTruthValues(), rightResult.getTruthValues(), pathFormula.getUpperBound()))); return result; } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeNextProbabilitiesHelper(bool minimize, storm::storage::BitVector const& nextStates) { // Create the vector with which to multiply and initialize it correctly. std::vector<ValueType> result(model.getNumberOfStates()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>()); STORM_LOG_THROW(nondeterministicLinearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid equation solver available."); this->nondeterministicLinearEquationSolver->performMatrixVectorMultiplication(minimize, model.getTransitionMatrix(), result); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); ExplicitQualitativeCheckResult& subResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*subResultPointer); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValues()))); } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver, bool qualitative) { size_t numberOfStates = phiStates.size(); // We need to identify the states which have to be taken out of the matrix, i.e. // all states that have probability 0 and 1 of satisfying the until-formula. std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01; if (minimize) { statesWithProbability01 = storm::utility::graph::performProb01Min(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates); } storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second); storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(numberOfStates); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5)); } else { if (!maybeStates.empty()) { // In this case we have have to compute the probabilities. // First, we can eliminate the rows and columns from the original transition probability matrix for states // whose probabilities are already known. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, statesWithProbability1); // Create vector for results for maybe states. std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. nondeterministicLinearEquationSolver->solveEquationSystem(minimize, submatrix, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>()); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult& leftResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*leftResultPointer); ExplicitQualitativeCheckResult& rightResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*rightResultPointer); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(SparseMdpPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, model.getTransitionMatrix(), model.getBackwardTransitions(), leftResult.getTruthValues(), rightResult.getTruthValues(), nondeterministicLinearEquationSolver, qualitative))); } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeCumulativeRewardsHelper(bool minimize, uint_fast64_t stepBound) const { // Only compute the result if the model has at least one reward model. STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. std::vector<ValueType> totalRewardVector; if (model.hasTransitionRewards()) { totalRewardVector = model.getTransitionMatrix().getPointwiseProductRowSumVector(model.getTransitionRewardMatrix()); if (model.hasStateRewards()) { storm::utility::vector::addVectorsInPlace(totalRewardVector, model.getStateRewardVector()); } } else { totalRewardVector = std::vector<ValueType>(model.getStateRewardVector()); } // Initialize result to either the state rewards of the model or the null vector. std::vector<ValueType> result; if (model.hasStateRewards()) { result = std::vector<ValueType>(model.getStateRewardVector()); } else { result.resize(model.getNumberOfStates()); } this->nondeterministicLinearEquationSolver->performMatrixVectorMultiplication(minimize, model.getTransitionMatrix(), result, &totalRewardVector, stepBound); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getStepBound()))); } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeInstantaneousRewardsHelper(bool minimize, uint_fast64_t stepCount) const { // Only compute the result if the model has a state-based reward model. STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Initialize result to state rewards of the model. std::vector<ValueType> result(model.getStateRewardVector()); STORM_LOG_THROW(nondeterministicLinearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->nondeterministicLinearEquationSolver->performMatrixVectorMultiplication(minimize, model.getTransitionMatrix(), result, nullptr, stepCount); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getStepCount()))); } template<typename ValueType> std::vector<ValueType> SparseMdpPrctlModelChecker<ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::storage::BitVector const& targetStates, bool qualitative) const { // Only compute the result if the model has at least one reward model. STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::storage::BitVector infinityStates; storm::storage::BitVector trueStates(model.getNumberOfStates(), true); if (minimize) { infinityStates = std::move(storm::utility::graph::performProb1A(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), trueStates, targetStates)); } else { infinityStates = std::move(storm::utility::graph::performProb1E(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), trueStates, targetStates)); } infinityStates.complement(); storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates; LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); LOG4CPLUS_INFO(logger, "Found " << targetStates.getNumberOfSetBits() << " 'target' states."); LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(model.getNumberOfStates()); // Check whether we need to compute exact rewards for some states. if (model.getInitialStates().isDisjointFrom(maybeStates)) { LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step." << " No exact rewards were computed."); // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>()); } else { // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix for states // whose reward values are already known. storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, false); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector<ValueType> b(submatrix.getRowCount()); if (model.hasTransitionRewards()) { // If a transition-based reward model is available, we initialize the right-hand // side to the vector resulting from summing the rows of the pointwise product // of the transition probability matrix and the transition reward matrix. std::vector<ValueType> pointwiseProductRowSumVector = model.getTransitionMatrix().getPointwiseProductRowSumVector(model.getTransitionRewardMatrix()); storm::utility::vector::selectVectorValues(b, maybeStates, model.getTransitionMatrix().getRowGroupIndices(), pointwiseProductRowSumVector); if (model.hasStateRewards()) { // If a state-based reward model is also available, we need to add this vector // as well. As the state reward vector contains entries not just for the states // that we still consider (i.e. maybeStates), we need to extract these values // first. std::vector<ValueType> subStateRewards(b.size()); storm::utility::vector::selectVectorValuesRepeatedly(subStateRewards, maybeStates, model.getTransitionMatrix().getRowGroupIndices(), model.getStateRewardVector()); storm::utility::vector::addVectorsInPlace(b, subStateRewards); } } else { // If only a state-based reward model is available, we take this vector as the // right-hand side. As the state reward vector contains entries not just for the // states that we still consider (i.e. maybeStates), we need to extract these values // first. storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, model.getTransitionMatrix().getRowGroupIndices(), model.getStateRewardVector()); } // Create vector for results for maybe states. std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); // Solve the corresponding system of equations. this->nondeterministicLinearEquationSolver->solveEquationSystem(minimize, submatrix, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, targetStates, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); ExplicitQualitativeCheckResult& subResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*subResultPointer); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValues(), qualitative))); } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::checkBooleanLiteralFormula(storm::logic::BooleanLiteralFormula const& stateFormula) { if (stateFormula.isTrueFormula()) { return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates(), true))); } else { return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates()))); } } template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::checkAtomicLabelFormula(storm::logic::AtomicLabelFormula const& stateFormula) { return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(model.getLabeledStates(stateFormula.getLabel()))); } template class SparseMdpPrctlModelChecker<double>; } }