#include "src/solver/GlpkLpSolver.h" #ifdef STORM_HAVE_GLPK #include <iostream> #include "src/storage/expressions/LinearCoefficientVisitor.h" #include "src/settings/Settings.h" #include "src/exceptions/ExceptionMacros.h" #include "src/exceptions/InvalidAccessException.h" #include "src/exceptions/InvalidStateException.h" bool GlpkLpSolverOptionsRegistered = storm::settings::Settings::registerNewModule([] (storm::settings::Settings* instance) -> bool { instance->addOption(storm::settings::OptionBuilder("GlpkLpSolver", "glpkoutput", "", "If set, the glpk output will be printed to the command line.").build()); instance->addOption(storm::settings::OptionBuilder("GurobiLpSolver", "glpkinttol", "", "Sets glpk's precision for integer variables.").addArgument(storm::settings::ArgumentBuilder::createDoubleArgument("value", "The precision to achieve.").setDefaultValueDouble(1e-06).addValidationFunctionDouble(storm::settings::ArgumentValidators::doubleRangeValidatorExcluding(0.0, 1.0)).build()).build()); return true; }); namespace storm { namespace solver { GlpkLpSolver::GlpkLpSolver(std::string const& name, ModelSense const& modelSense) : LpSolver(modelSense), lp(nullptr), variableNameToIndexMap(), nextVariableIndex(1), nextConstraintIndex(1), modelContainsIntegerVariables(false), isInfeasibleFlag(false), isUnboundedFlag(false), rowIndices(), columnIndices(), coefficientValues() { // Create the LP problem for glpk. lp = glp_create_prob(); // Set its name and model sense. glp_set_prob_name(lp, name.c_str()); // Set whether the glpk output shall be printed to the command line. glp_term_out(storm::settings::Settings::getInstance()->isSet("debug") || storm::settings::Settings::getInstance()->isSet("glpkoutput") ? GLP_ON : GLP_OFF); // Because glpk uses 1-based indexing (wtf!?), we need to put dummy elements into the matrix vectors. rowIndices.push_back(0); columnIndices.push_back(0); coefficientValues.push_back(0); } GlpkLpSolver::GlpkLpSolver(std::string const& name) : GlpkLpSolver(name, ModelSense::Minimize) { // Intentionally left empty. } GlpkLpSolver::GlpkLpSolver() : GlpkLpSolver("", ModelSense::Minimize) { // Intentionally left empty. } GlpkLpSolver::GlpkLpSolver(ModelSense const& modelSense) : GlpkLpSolver("", modelSense) { // Intentionally left empty. } GlpkLpSolver::~GlpkLpSolver() { // Dispose of all objects allocated dynamically by glpk. glp_delete_prob(this->lp); glp_free_env(); } void GlpkLpSolver::addBoundedContinuousVariable(std::string const& name, double lowerBound, double upperBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_CV, GLP_DB, lowerBound, upperBound, objectiveFunctionCoefficient); } void GlpkLpSolver::addLowerBoundedContinuousVariable(std::string const& name, double lowerBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_CV, GLP_LO, lowerBound, 0, objectiveFunctionCoefficient); } void GlpkLpSolver::addUpperBoundedContinuousVariable(std::string const& name, double upperBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_CV, GLP_UP, 0, upperBound, objectiveFunctionCoefficient); } void GlpkLpSolver::addUnboundedContinuousVariable(std::string const& name, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_CV, GLP_FR, 0, 0, objectiveFunctionCoefficient); } void GlpkLpSolver::addBoundedIntegerVariable(std::string const& name, double lowerBound, double upperBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_IV, GLP_DB, lowerBound, upperBound, objectiveFunctionCoefficient); this->modelContainsIntegerVariables = true; } void GlpkLpSolver::addLowerBoundedIntegerVariable(std::string const& name, double lowerBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_IV, GLP_LO, lowerBound, 0, objectiveFunctionCoefficient); this->modelContainsIntegerVariables = true; } void GlpkLpSolver::addUpperBoundedIntegerVariable(std::string const& name, double upperBound, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_IV, GLP_UP, 0, upperBound, objectiveFunctionCoefficient); this->modelContainsIntegerVariables = true; } void GlpkLpSolver::addUnboundedIntegerVariable(std::string const& name, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_IV, GLP_FR, 0, 0, objectiveFunctionCoefficient); this->modelContainsIntegerVariables = true; } void GlpkLpSolver::addBinaryVariable(std::string const& name, double objectiveFunctionCoefficient) { this->addVariable(name, GLP_BV, GLP_FR, 0, 0, objectiveFunctionCoefficient); this->modelContainsIntegerVariables = true; } void GlpkLpSolver::addVariable(std::string const& name, int variableType, int boundType, double lowerBound, double upperBound, double objectiveFunctionCoefficient) { // Check whether variable already exists. auto nameIndexPair = this->variableNameToIndexMap.find(name); LOG_THROW(nameIndexPair == this->variableNameToIndexMap.end(), storm::exceptions::InvalidArgumentException, "Variable '" << nameIndexPair->first << "' already exists."); // Check for valid variable type. LOG_ASSERT(variableType == GLP_CV || variableType == GLP_IV || variableType == GLP_BV, "Illegal type '" << variableType << "' for glpk variable."); // Check for valid bound type. LOG_ASSERT(boundType == GLP_FR || boundType == GLP_UP || boundType == GLP_LO || boundType == GLP_DB, "Illegal bound type for variable '" << name << "'."); // Finally, create the actual variable. glp_add_cols(this->lp, 1); glp_set_col_name(this->lp, nextVariableIndex, name.c_str()); glp_set_col_bnds(lp, nextVariableIndex, boundType, lowerBound, upperBound); glp_set_col_kind(this->lp, nextVariableIndex, variableType); glp_set_obj_coef(this->lp, nextVariableIndex, objectiveFunctionCoefficient); this->variableNameToIndexMap.emplace(name, this->nextVariableIndex); ++this->nextVariableIndex; } void GlpkLpSolver::update() const { // Intentionally left empty. } void GlpkLpSolver::addConstraint(std::string const& name, storm::expressions::Expression const& constraint) { // Add the row that will represent this constraint. glp_add_rows(this->lp, 1); glp_set_row_name(this->lp, nextConstraintIndex, name.c_str()); LOG_THROW(constraint.isRelationalExpression(), storm::exceptions::InvalidArgumentException, "Illegal constraint is not a relational expression."); LOG_THROW(constraint.getOperator() != storm::expressions::OperatorType::NotEqual, storm::exceptions::InvalidArgumentException, "Illegal constraint uses inequality operator."); std::pair<storm::expressions::SimpleValuation, double> leftCoefficients = storm::expressions::LinearCoefficientVisitor().getLinearCoefficients(constraint.getOperand(0)); std::pair<storm::expressions::SimpleValuation, double> rightCoefficients = storm::expressions::LinearCoefficientVisitor().getLinearCoefficients(constraint.getOperand(1)); for (auto const& identifier : rightCoefficients.first.getDoubleIdentifiers()) { if (leftCoefficients.first.containsDoubleIdentifier(identifier)) { leftCoefficients.first.setDoubleValue(identifier, leftCoefficients.first.getDoubleValue(identifier) - rightCoefficients.first.getDoubleValue(identifier)); } else { leftCoefficients.first.addDoubleIdentifier(identifier, -rightCoefficients.first.getDoubleValue(identifier)); } } rightCoefficients.second -= leftCoefficients.second; // Now we need to transform the coefficients to the vector representation. std::vector<int> variables; std::vector<double> coefficients; for (auto const& identifier : leftCoefficients.first.getDoubleIdentifiers()) { auto identifierIndexPair = this->variableNameToIndexMap.find(identifier); LOG_THROW(identifierIndexPair != this->variableNameToIndexMap.end(), storm::exceptions::InvalidArgumentException, "Constraint contains illegal identifier '" << identifier << "'."); variables.push_back(identifierIndexPair->second); coefficients.push_back(leftCoefficients.first.getDoubleValue(identifier)); } // Determine the type of the constraint and add it properly. switch (constraint.getOperator()) { case storm::expressions::OperatorType::Less: glp_set_row_bnds(this->lp, nextConstraintIndex, GLP_UP, 0, rightCoefficients.second - storm::settings::Settings::getInstance()->getOptionByLongName("glpkinttol").getArgument(0).getValueAsDouble()); break; case storm::expressions::OperatorType::LessOrEqual: glp_set_row_bnds(this->lp, nextConstraintIndex, GLP_UP, 0, rightCoefficients.second); break; case storm::expressions::OperatorType::Greater: glp_set_row_bnds(this->lp, nextConstraintIndex, GLP_LO, rightCoefficients.second + storm::settings::Settings::getInstance()->getOptionByLongName("glpkinttol").getArgument(0).getValueAsDouble(), 0); break; case storm::expressions::OperatorType::GreaterOrEqual: glp_set_row_bnds(this->lp, nextConstraintIndex, GLP_LO, rightCoefficients.second, 0); break; case storm::expressions::OperatorType::Equal: glp_set_row_bnds(this->lp, nextConstraintIndex, GLP_FX, rightCoefficients.second, rightCoefficients.second); break; default: LOG_ASSERT(false, "Illegal operator in LP solver constraint."); } // Record the variables and coefficients in the coefficient matrix. rowIndices.insert(rowIndices.end(), variables.size(), nextConstraintIndex); columnIndices.insert(columnIndices.end(), variables.begin(), variables.end()); coefficientValues.insert(coefficientValues.end(), coefficients.begin(), coefficients.end()); ++nextConstraintIndex; this->currentModelHasBeenOptimized = false; } void GlpkLpSolver::optimize() const { // First, reset the flags. this->isInfeasibleFlag = false; this->isUnboundedFlag = false; // Start by setting the model sense. glp_set_obj_dir(this->lp, this->getModelSense() == LpSolver::ModelSense::Minimize ? GLP_MIN : GLP_MAX); glp_load_matrix(this->lp, rowIndices.size() - 1, rowIndices.data(), columnIndices.data(), coefficientValues.data()); int error = 0; if (this->modelContainsIntegerVariables) { glp_iocp* parameters = new glp_iocp(); glp_init_iocp(parameters); parameters->presolve = GLP_ON; parameters->tol_int = storm::settings::Settings::getInstance()->getOptionByLongName("glpkinttol").getArgument(0).getValueAsDouble(); error = glp_intopt(this->lp, parameters); delete parameters; // In case the error is caused by an infeasible problem, we do not want to view this as an error and // reset the error code. if (error == GLP_ENOPFS) { this->isInfeasibleFlag = true; error = 0; } else if (error == GLP_ENODFS) { this->isUnboundedFlag = true; error = 0; } else if (error == GLP_EBOUND) { throw storm::exceptions::InvalidStateException() << "The bounds of some variables are illegal. Note that glpk only accepts integer bounds for integer variables."; } } else { error = glp_simplex(this->lp, nullptr); } LOG_THROW(error == 0, storm::exceptions::InvalidStateException, "Unable to optimize glpk model (" << error << ")."); this->currentModelHasBeenOptimized = true; } bool GlpkLpSolver::isInfeasible() const { if (!this->currentModelHasBeenOptimized) { throw storm::exceptions::InvalidStateException() << "Illegal call to GlpkLpSolver::isInfeasible: model has not been optimized."; } if (this->modelContainsIntegerVariables) { return isInfeasibleFlag; } else { return glp_get_status(this->lp) == GLP_INFEAS || glp_get_status(this->lp) == GLP_NOFEAS; } } bool GlpkLpSolver::isUnbounded() const { if (!this->currentModelHasBeenOptimized) { throw storm::exceptions::InvalidStateException() << "Illegal call to GlpkLpSolver::isUnbounded: model has not been optimized."; } if (this->modelContainsIntegerVariables) { return isUnboundedFlag; } else { return glp_get_status(this->lp) == GLP_UNBND; } } bool GlpkLpSolver::isOptimal() const { if (!this->currentModelHasBeenOptimized) { return false; } int status = 0; if (this->modelContainsIntegerVariables) { status = glp_mip_status(this->lp); } else { status = glp_get_status(this->lp); } return status == GLP_OPT; } double GlpkLpSolver::getContinuousValue(std::string const& name) const { if (!this->isOptimal()) { LOG_THROW(!this->isInfeasible(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from infeasible model."); LOG_THROW(!this->isUnbounded(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unbounded model."); LOG_THROW(false, storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unoptimized model."); } auto variableIndexPair = this->variableNameToIndexMap.find(name); LOG_THROW(variableIndexPair != this->variableNameToIndexMap.end(), storm::exceptions::InvalidAccessException, "Accessing value of unknown variable '" << name << "'."); double value = 0; if (this->modelContainsIntegerVariables) { value = glp_mip_col_val(this->lp, static_cast<int>(variableIndexPair->second)); } else { value = glp_get_col_prim(this->lp, static_cast<int>(variableIndexPair->second)); } return value; } int_fast64_t GlpkLpSolver::getIntegerValue(std::string const& name) const { if (!this->isOptimal()) { LOG_THROW(!this->isInfeasible(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from infeasible model."); LOG_THROW(!this->isUnbounded(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unbounded model."); LOG_THROW(false, storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unoptimized model."); } auto variableIndexPair = this->variableNameToIndexMap.find(name); LOG_THROW(variableIndexPair != this->variableNameToIndexMap.end(), storm::exceptions::InvalidAccessException, "Accessing value of unknown variable '" << name << "'."); double value = 0; if (this->modelContainsIntegerVariables) { value = glp_mip_col_val(this->lp, static_cast<int>(variableIndexPair->second)); } else { value = glp_get_col_prim(this->lp, static_cast<int>(variableIndexPair->second)); } // Now check the desired precision was actually achieved. LOG_THROW(std::abs(static_cast<int>(value) - value) <= storm::settings::Settings::getInstance()->getOptionByLongName("glpkinttol").getArgument(0).getValueAsDouble(), storm::exceptions::InvalidStateException, "Illegal value for integer variable in glpk solution (" << value << ")."); return static_cast<int_fast64_t>(value); } bool GlpkLpSolver::getBinaryValue(std::string const& name) const { if (!this->isOptimal()) { LOG_THROW(!this->isInfeasible(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from infeasible model."); LOG_THROW(!this->isUnbounded(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unbounded model."); LOG_THROW(false, storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unoptimized model."); } auto variableIndexPair = this->variableNameToIndexMap.find(name); LOG_THROW(variableIndexPair != this->variableNameToIndexMap.end(), storm::exceptions::InvalidAccessException, "Accessing value of unknown variable '" << name << "'."); double value = 0; if (this->modelContainsIntegerVariables) { value = glp_mip_col_val(this->lp, static_cast<int>(variableIndexPair->second)); } else { value = glp_get_col_prim(this->lp, static_cast<int>(variableIndexPair->second)); } LOG_THROW(std::abs(static_cast<int>(value) - value) <= storm::settings::Settings::getInstance()->getOptionByLongName("glpkinttol").getArgument(0).getValueAsDouble(), storm::exceptions::InvalidStateException, "Illegal value for binary variable in glpk solution (" << value << ")."); return static_cast<bool>(value); } double GlpkLpSolver::getObjectiveValue() const { if (!this->isOptimal()) { LOG_THROW(!this->isInfeasible(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from infeasible model."); LOG_THROW(!this->isUnbounded(), storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unbounded model."); LOG_THROW(false, storm::exceptions::InvalidAccessException, "Unable to get glpk solution from unoptimized model."); } double value = 0; if (this->modelContainsIntegerVariables) { value = glp_mip_obj_val(this->lp); } else { value = glp_get_obj_val(this->lp); } return value; } void GlpkLpSolver::writeModelToFile(std::string const& filename) const { glp_load_matrix(this->lp, rowIndices.size() - 1, rowIndices.data(), columnIndices.data(), coefficientValues.data()); glp_write_lp(this->lp, 0, filename.c_str()); } } } #endif