#include "gtest/gtest.h" #include "storm-config.h" #include "src/storage/SparseMatrix.h" #include "src/utility/solver.h" #include "src/settings/SettingsManager.h" #include "src/solver/GameSolver.h" #include "src/settings/modules/NativeEquationSolverSettings.h" TEST(GameSolverTest, Solve) { // Construct simple game. Start with player 2 matrix. storm::storage::SparseMatrixBuilder player2MatrixBuilder(0, 0, 0, false, true); player2MatrixBuilder.newRowGroup(0); player2MatrixBuilder.addNextValue(0, 0, 0.4); player2MatrixBuilder.addNextValue(0, 1, 0.6); player2MatrixBuilder.addNextValue(1, 1, 0.2); player2MatrixBuilder.addNextValue(1, 2, 0.8); player2MatrixBuilder.newRowGroup(2); player2MatrixBuilder.addNextValue(2, 2, 0.5); player2MatrixBuilder.addNextValue(2, 3, 0.5); player2MatrixBuilder.addNextValue(3, 0, 1); player2MatrixBuilder.newRowGroup(4); player2MatrixBuilder.newRowGroup(5); player2MatrixBuilder.newRowGroup(6); storm::storage::SparseMatrix player2Matrix = player2MatrixBuilder.build(); // Now build player 1 matrix. storm::storage::SparseMatrixBuilder player1MatrixBuilder(0, 0, 0, false, true); player1MatrixBuilder.newRowGroup(0); player1MatrixBuilder.addNextValue(0, 0, 1); player1MatrixBuilder.addNextValue(1, 1, 1); player1MatrixBuilder.newRowGroup(2); player1MatrixBuilder.addNextValue(2, 2, 1); player1MatrixBuilder.newRowGroup(3); player1MatrixBuilder.addNextValue(3, 3, 1); player1MatrixBuilder.newRowGroup(4); player1MatrixBuilder.addNextValue(4, 4, 1); storm::storage::SparseMatrix player1Matrix = player1MatrixBuilder.build(); std::unique_ptr> solverFactory(new storm::utility::solver::GameSolverFactory()); std::unique_ptr> solver = solverFactory->create(player1Matrix, player2Matrix); // Create solution and target state vector. std::vector result(4); std::vector b(7); b[4] = 1; b[6] = 1; // Now solve the game with different strategies for the players. solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, result, b); EXPECT_NEAR(0, result[0], storm::settings::getModule().getPrecision()); result = std::vector(4); solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, result, b); EXPECT_NEAR(0.5, result[0], storm::settings::getModule().getPrecision()); result = std::vector(4); solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, result, b); EXPECT_NEAR(0.2, result[0], storm::settings::getModule().getPrecision()); result = std::vector(4); solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, result, b); EXPECT_NEAR(0.99999892625817599, result[0], storm::settings::getModule().getPrecision()); }