#include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h" #include "src/storage/dd/CuddOdd.h" #include "src/utility/macros.h" #include "src/utility/graph.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" #include "src/modelchecker/results/HybridQuantitativeCheckResult.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { template<storm::dd::DdType DdType, typename ValueType> HybridDtmcPrctlModelChecker<DdType, ValueType>::HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) { // Intentionally left empty. } template<storm::dd::DdType DdType, typename ValueType> HybridDtmcPrctlModelChecker<DdType, ValueType>::HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(new storm::utility::solver::LinearEquationSolverFactory<ValueType>()) { // Intentionally left empty. } template<storm::dd::DdType DdType, typename ValueType> bool HybridDtmcPrctlModelChecker<DdType, ValueType>::canHandle(storm::logic::Formula const& formula) const { return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula(); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 and 1 of satisfying the until-formula. std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates); storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates(); // Perform some logging. STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states."); STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd<DdType> odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd(); prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn; subvector = subvector.sumAbstract(model.getColumnVariables()); // Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed // for solving the equation system (i.e. compute (I-A)). submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix; // Create the solution vector. std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5)); // Translate the symbolic matrix/vector to their explicit representations and solve the equation system. storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd); std::vector<ValueType> b = subvector.template toVector<ValueType>(odd); std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix); solver->solveEquationSystem(x, b); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd())); } } } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); return this->computeUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector()))); } template<storm::dd::DdType DdType, typename ValueType> storm::dd::Add<DdType> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) { storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd(); return result.sumAbstract(model.getColumnVariables()); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); return this->computeBoundedUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 or 1 of satisfying the until-formula. storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound); storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates(); // If there are maybe states, we need to perform matrix-vector multiplications. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd<DdType> odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables()); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Create the solution vector. std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>()); // Translate the symbolic matrix/vector to their explicit representations. storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd); std::vector<ValueType> b = subvector.template toVector<ValueType>(odd); std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix); solver->performMatrixVectorMultiplication(x, &b, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd())); } } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return this->computeCumulativeRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero(); if (model.hasTransitionRewards()) { totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables()); } // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd<DdType> odd(model.getReachableStates()); // Create the solution vector. std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>()); // Translate the symbolic matrix/vector to their explicit representations. storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd); std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(odd); // Perform the matrix-vector multiplication. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix); solver->performMatrixVectorMultiplication(x, &b, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return this->computeInstantaneousRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd<DdType> odd(model.getReachableStates()); // Create the solution vector (and initialize it to the state rewards of the model). std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(odd); // Translate the symbolic matrix to its explicit representations. storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd); // Perform the matrix-vector multiplication. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix); solver->performMatrixVectorMultiplication(x, nullptr, stepBound); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); return this->computeReachabilityRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) { // Only compute the result if there is at least one reward model. STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates); infinityStates = !infinityStates && model.getReachableStates(); storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates(); STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>()))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the ODD for the translation between symbolic and explicit storage. storm::dd::Odd<DdType> odd(maybeStates); // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the state reward vector to use in the computation. storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero(); if (transitionRewardMatrix) { subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables()); } // Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed // for solving the equation system (i.e. compute (I-A)). submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix; // Create the solution vector. std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5)); // Translate the symbolic matrix/vector to their explicit representations. storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd); std::vector<ValueType> b = subvector.template toVector<ValueType>(odd); // Now solve the resulting equation system. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix); solver->solveEquationSystem(x, b); // Return a hybrid check result that stores the numerical values explicitly. return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()))); } } } template<storm::dd::DdType DdType, typename ValueType> storm::models::symbolic::Dtmc<DdType> const& HybridDtmcPrctlModelChecker<DdType, ValueType>::getModel() const { return this->template getModelAs<storm::models::symbolic::Dtmc<DdType>>(); } template class HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, double>; } }