#include "src/abstraction/prism/AbstractProgram.h" #include "src/abstraction/BottomStateResult.h" #include "src/storage/prism/Program.h" #include "src/storage/dd/DdManager.h" #include "src/storage/dd/Add.h" #include "src/models/symbolic/StandardRewardModel.h" #include "src/utility/macros.h" #include "src/utility/solver.h" #include "src/exceptions/WrongFormatException.h" #include "src/exceptions/InvalidArgumentException.h" #include "storm-config.h" #include "src/adapters/CarlAdapter.h" namespace storm { namespace abstraction { namespace prism { template <storm::dd::DdType DdType, typename ValueType> AbstractProgram<DdType, ValueType>::AbstractProgram(storm::prism::Program const& program, std::vector<storm::expressions::Expression> const& initialPredicates, std::shared_ptr<storm::utility::solver::SmtSolverFactory> const& smtSolverFactory, bool addAllGuards) : program(program), smtSolverFactory(smtSolverFactory), abstractionInformation(program.getManager()), modules(), initialStateAbstractor(abstractionInformation, program.getAllExpressionVariables(), {program.getInitialConstruct().getInitialStatesExpression()}, this->smtSolverFactory), addedAllGuards(addAllGuards), currentGame(nullptr) { // For now, we assume that there is a single module. If the program has more than one module, it needs // to be flattened before the procedure. STORM_LOG_THROW(program.getNumberOfModules() == 1, storm::exceptions::WrongFormatException, "Cannot create abstract program from program containing too many modules."); // Add all variables and range expressions to the information object. for (auto const& variable : this->program.get().getAllExpressionVariables()) { abstractionInformation.addExpressionVariable(variable); } for (auto const& range : this->program.get().getAllRangeExpressions()) { abstractionInformation.addConstraint(range); initialStateAbstractor.constrain(range); } uint_fast64_t totalNumberOfCommands = 0; uint_fast64_t maximalUpdateCount = 0; std::vector<storm::expressions::Expression> allGuards; for (auto const& module : program.getModules()) { // If we were requested to add all guards to the set of predicates, we do so now. for (auto const& command : module.getCommands()) { if (addAllGuards) { allGuards.push_back(command.getGuardExpression()); } maximalUpdateCount = std::max(maximalUpdateCount, static_cast<uint_fast64_t>(command.getNumberOfUpdates())); } totalNumberOfCommands += module.getNumberOfCommands(); } // NOTE: currently we assume that 100 player 2 variables suffice, which corresponds to 2^100 possible // choices. If for some reason this should not be enough, we could grow this vector dynamically, but // odds are that it's impossible to treat such models in any event. abstractionInformation.createEncodingVariables(static_cast<uint_fast64_t>(std::ceil(std::log2(totalNumberOfCommands))), 100, static_cast<uint_fast64_t>(std::ceil(std::log2(maximalUpdateCount)))); // Now that we have created all other DD variables, we create the DD variables for the predicates. std::vector<uint_fast64_t> allPredicateIndices; if (addAllGuards) { for (auto const& guard : allGuards) { allPredicateIndices.push_back(abstractionInformation.addPredicate(guard)); } } for (auto const& predicate : initialPredicates) { allPredicateIndices.push_back(abstractionInformation.addPredicate(predicate)); } // For each module of the concrete program, we create an abstract counterpart. for (auto const& module : program.getModules()) { this->modules.emplace_back(module, abstractionInformation, this->smtSolverFactory, addAllGuards); } // Refine the initial state abstractors using the initial predicates. initialStateAbstractor.refine(allPredicateIndices); // Retrieve the command-update probability ADD, so we can multiply it with the abstraction BDD later. commandUpdateProbabilitiesAdd = modules.front().getCommandUpdateProbabilitiesAdd(); // Finally, we build the game the first time. currentGame = buildGame(); } template <storm::dd::DdType DdType, typename ValueType> void AbstractProgram<DdType, ValueType>::refine(std::vector<storm::expressions::Expression> const& predicates) { STORM_LOG_THROW(!predicates.empty(), storm::exceptions::InvalidArgumentException, "Cannot refine without predicates."); // Add the predicates to the global list of predicates. std::vector<uint_fast64_t> newPredicateIndices; for (auto const& predicate : predicates) { STORM_LOG_THROW(predicate.hasBooleanType(), storm::exceptions::InvalidArgumentException, "Expecting a predicate of type bool."); uint_fast64_t newPredicateIndex = abstractionInformation.addPredicate(predicate); newPredicateIndices.push_back(newPredicateIndex); } // Refine all abstract modules. for (auto& module : modules) { module.refine(newPredicateIndices); } // Refine initial state abstractor. initialStateAbstractor.refine(newPredicateIndices); // Finally, we rebuild the game. currentGame = buildGame(); } template <storm::dd::DdType DdType, typename ValueType> MenuGame<DdType, ValueType> AbstractProgram<DdType, ValueType>::getAbstractGame() { STORM_LOG_ASSERT(currentGame != nullptr, "Game was not properly created."); return *currentGame; } template <storm::dd::DdType DdType, typename ValueType> storm::dd::Bdd<DdType> AbstractProgram<DdType, ValueType>::getStates(storm::expressions::Expression const& predicate) { STORM_LOG_ASSERT(currentGame != nullptr, "Game was not properly created."); return abstractionInformation.getPredicateSourceVariable(predicate); } template <storm::dd::DdType DdType, typename ValueType> std::unique_ptr<MenuGame<DdType, ValueType>> AbstractProgram<DdType, ValueType>::buildGame() { // As long as there is only one module, we only build its game representation. GameBddResult<DdType> game = modules.front().getAbstractBdd(); // Construct a set of all unnecessary variables, so we can abstract from it. std::set<storm::expressions::Variable> variablesToAbstract(abstractionInformation.getPlayer1VariableSet(abstractionInformation.getPlayer1VariableCount())); auto player2Variables = abstractionInformation.getPlayer2VariableSet(game.numberOfPlayer2Variables); variablesToAbstract.insert(player2Variables.begin(), player2Variables.end()); auto auxVariables = abstractionInformation.getAuxVariableSet(0, abstractionInformation.getAuxVariableCount()); variablesToAbstract.insert(auxVariables.begin(), auxVariables.end()); // Do a reachability analysis on the raw transition relation. storm::dd::Bdd<DdType> transitionRelation = game.bdd.existsAbstract(variablesToAbstract); storm::dd::Bdd<DdType> initialStates = initialStateAbstractor.getAbstractStates(); storm::dd::Bdd<DdType> reachableStates = this->getReachableStates(initialStates, transitionRelation); // Find the deadlock states in the model. Note that this does not find the 'deadlocks' in bottom states, // as the bottom states are not contained in the reachable states. storm::dd::Bdd<DdType> deadlockStates = transitionRelation.existsAbstract(abstractionInformation.getSuccessorVariables()); deadlockStates = reachableStates && !deadlockStates; // If there are deadlock states, we fix them now. storm::dd::Add<DdType, ValueType> deadlockTransitions = abstractionInformation.getDdManager().template getAddZero<ValueType>(); if (!deadlockStates.isZero()) { deadlockTransitions = (deadlockStates && abstractionInformation.getAllPredicateIdentities() && abstractionInformation.encodePlayer1Choice(0, abstractionInformation.getPlayer1VariableCount()) && abstractionInformation.encodePlayer2Choice(0, game.numberOfPlayer2Variables) && abstractionInformation.encodeAux(0, 0, abstractionInformation.getAuxVariableCount())).template toAdd<ValueType>(); } // Compute bottom states and the appropriate transitions if necessary. BottomStateResult<DdType> bottomStateResult(abstractionInformation.getDdManager().getBddZero(), abstractionInformation.getDdManager().getBddZero()); bool hasBottomStates = false; if (!addedAllGuards) { bottomStateResult = modules.front().getBottomStateTransitions(reachableStates, game.numberOfPlayer2Variables); hasBottomStates = !bottomStateResult.states.isZero(); } // Construct the transition matrix by cutting away the transitions of unreachable states. storm::dd::Add<DdType, ValueType> transitionMatrix = (game.bdd && reachableStates).template toAdd<ValueType>() * commandUpdateProbabilitiesAdd + deadlockTransitions; // If there are bottom states, we need to mark all other states as non-bottom now. if (hasBottomStates) { transitionMatrix *= (abstractionInformation.getBottomStateBdd(true, true) && abstractionInformation.getBottomStateBdd(false, true)).template toAdd<ValueType>(); transitionMatrix += bottomStateResult.transitions.template toAdd<ValueType>(); reachableStates &= abstractionInformation.getBottomStateBdd(true, true); reachableStates |= bottomStateResult.states; } std::set<storm::expressions::Variable> usedPlayer2Variables(abstractionInformation.getPlayer2Variables().begin(), abstractionInformation.getPlayer2Variables().begin() + game.numberOfPlayer2Variables); std::set<storm::expressions::Variable> allNondeterminismVariables = usedPlayer2Variables; allNondeterminismVariables.insert(abstractionInformation.getPlayer1Variables().begin(), abstractionInformation.getPlayer1Variables().end()); std::set<storm::expressions::Variable> allSourceVariables(abstractionInformation.getSourceVariables()); if (hasBottomStates) { allSourceVariables.insert(abstractionInformation.getBottomStateVariable(true)); } std::set<storm::expressions::Variable> allSuccessorVariables(abstractionInformation.getSuccessorVariables()); if (hasBottomStates) { allSuccessorVariables.insert(abstractionInformation.getBottomStateVariable(false)); } return std::make_unique<MenuGame<DdType, ValueType>>(abstractionInformation.getDdManagerAsSharedPointer(), reachableStates, initialStates, abstractionInformation.getDdManager().getBddZero(), transitionMatrix, bottomStateResult.states, allSourceVariables, allSuccessorVariables, hasBottomStates ? abstractionInformation.getExtendedSourceSuccessorVariablePairs() : abstractionInformation.getSourceSuccessorVariablePairs(), std::set<storm::expressions::Variable>(abstractionInformation.getPlayer1Variables().begin(), abstractionInformation.getPlayer1Variables().end()), usedPlayer2Variables, allNondeterminismVariables, auxVariables, abstractionInformation.getPredicateToBddMap()); } template <storm::dd::DdType DdType, typename ValueType> storm::dd::Bdd<DdType> AbstractProgram<DdType, ValueType>::getReachableStates(storm::dd::Bdd<DdType> const& initialStates, storm::dd::Bdd<DdType> const& transitionRelation) { storm::dd::Bdd<DdType> frontier = initialStates; storm::dd::Bdd<DdType> reachableStates = initialStates; uint_fast64_t reachabilityIteration = 0; while (!frontier.isZero()) { ++reachabilityIteration; frontier = frontier.andExists(transitionRelation, abstractionInformation.getSourceVariables()); frontier = frontier.swapVariables(abstractionInformation.getSourceSuccessorVariablePairs()); frontier &= !reachableStates; reachableStates |= frontier; STORM_LOG_TRACE("Iteration " << reachabilityIteration << " of reachability analysis."); } return reachableStates; } template <storm::dd::DdType DdType, typename ValueType> void AbstractProgram<DdType, ValueType>::exportToDot(std::string const& filename) const { std::ofstream out(filename); out << "digraph game {" << std::endl; // Create the player 1 nodes. storm::dd::Add<DdType, ValueType> statesAsAdd = currentGame->getReachableStates().template toAdd<ValueType>(); for (auto stateValue : statesAsAdd) { out << "\tpl1_"; std::stringstream stateName; for (auto const& var : currentGame->getRowVariables()) { if (stateValue.first.getBooleanValue(var)) { stateName << "1"; } else { stateName << "0"; } } out << stateName.str(); out << " [ label=\""; if (stateValue.first.getBooleanValue(abstractionInformation.getBottomStateVariable(true))) { out << "*\", margin=0, width=0, height=0, shape=\"none"; } else { out << stateName.str() << "\", margin=0, width=0, height=0, shape=\"oval"; } out << "\" ];" << std::endl; } // Create the nodes of the second player. storm::dd::Add<DdType, ValueType> player2States = currentGame->getTransitionMatrix().toBdd().existsAbstract(currentGame->getColumnVariables()).existsAbstract(currentGame->getPlayer2Variables()).template toAdd<ValueType>(); for (auto stateValue : player2States) { out << "\tpl2_"; std::stringstream stateName; for (auto const& var : currentGame->getRowVariables()) { if (stateValue.first.getBooleanValue(var)) { stateName << "1"; } else { stateName << "0"; } } uint_fast64_t index = 0; for (uint_fast64_t player1VariableIndex = 0; player1VariableIndex < abstractionInformation.getPlayer1VariableCount(); ++player1VariableIndex) { index <<= 1; if (stateValue.first.getBooleanValue(abstractionInformation.getPlayer1Variables()[player1VariableIndex])) { index |= 1; } } out << stateName.str() << "_" << index; out << " [ shape=\"square\", width=0, height=0, margin=0, label=\"" << index << "\" ];" << std::endl; out << "\tpl1_" << stateName.str() << " -> " << "pl2_" << stateName.str() << "_" << index << " [ label=\"" << index << "\" ];" << std::endl; } // Create the nodes of the probabilistic player. storm::dd::Add<DdType, ValueType> playerPStates = currentGame->getTransitionMatrix().toBdd().existsAbstract(currentGame->getColumnVariables()).template toAdd<ValueType>(); for (auto stateValue : playerPStates) { out << "\tplp_"; std::stringstream stateName; for (auto const& var : currentGame->getRowVariables()) { if (stateValue.first.getBooleanValue(var)) { stateName << "1"; } else { stateName << "0"; } } uint_fast64_t index = 0; for (uint_fast64_t player1VariableIndex = 0; player1VariableIndex < abstractionInformation.getPlayer1VariableCount(); ++player1VariableIndex) { index <<= 1; if (stateValue.first.getBooleanValue(abstractionInformation.getPlayer1Variables()[player1VariableIndex])) { index |= 1; } } stateName << "_" << index; index = 0; for (uint_fast64_t player2VariableIndex = 0; player2VariableIndex < currentGame->getPlayer2Variables().size(); ++player2VariableIndex) { index <<= 1; if (stateValue.first.getBooleanValue(abstractionInformation.getPlayer2Variables()[player2VariableIndex])) { index |= 1; } } out << stateName.str() << "_" << index; out << " [ shape=\"point\", label=\"\" ];" << std::endl; out << "\tpl2_" << stateName.str() << " -> " << "plp_" << stateName.str() << "_" << index << " [ label=\"" << index << "\" ];" << std::endl; } for (auto stateValue : currentGame->getTransitionMatrix()) { std::stringstream sourceStateName; std::stringstream successorStateName; for (auto const& var : currentGame->getRowVariables()) { if (stateValue.first.getBooleanValue(var)) { sourceStateName << "1"; } else { sourceStateName << "0"; } } for (auto const& var : currentGame->getColumnVariables()) { if (stateValue.first.getBooleanValue(var)) { successorStateName << "1"; } else { successorStateName << "0"; } } uint_fast64_t pl1Index = 0; for (uint_fast64_t player1VariableIndex = 0; player1VariableIndex < abstractionInformation.getPlayer1VariableCount(); ++player1VariableIndex) { pl1Index <<= 1; if (stateValue.first.getBooleanValue(abstractionInformation.getPlayer1Variables()[player1VariableIndex])) { pl1Index |= 1; } } uint_fast64_t pl2Index = 0; for (uint_fast64_t player2VariableIndex = 0; player2VariableIndex < currentGame->getPlayer2Variables().size(); ++player2VariableIndex) { pl2Index <<= 1; if (stateValue.first.getBooleanValue(abstractionInformation.getPlayer2Variables()[player2VariableIndex])) { pl2Index |= 1; } } out << "\tplp_" << sourceStateName.str() << "_" << pl1Index << "_" << pl2Index << " -> pl1_" << successorStateName.str() << " [ label=\"" << stateValue.second << "\"];" << std::endl; } out << "}" << std::endl; } // Explicitly instantiate the class. template class AbstractProgram<storm::dd::DdType::CUDD, double>; template class AbstractProgram<storm::dd::DdType::Sylvan, double>; #ifdef STORM_HAVE_CARL template class AbstractProgram<storm::dd::DdType::Sylvan, storm::RationalFunction>; #endif } } }