/* * MarkovAutomaton.h * * Created on: 07.11.2013 * Author: Christian Dehnert */ #ifndef STORM_MODELS_MA_H_ #define STORM_MODELS_MA_H_ #include "AbstractNondeterministicModel.h" #include "AtomicPropositionsLabeling.h" #include "src/storage/SparseMatrix.h" #include "src/exceptions/InvalidArgumentException.h" #include "src/settings/Settings.h" #include "src/utility/vector.h" #include "src/utility/matrix.h" namespace storm { namespace models { template <class T> class MarkovAutomaton : public storm::models::AbstractNondeterministicModel<T> { public: MarkovAutomaton(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::models::AtomicPropositionsLabeling const& stateLabeling, storm::storage::BitVector const& markovianStates, std::vector<T> const& exitRates, boost::optional<std::vector<T>> const& optionalStateRewardVector, boost::optional<storm::storage::SparseMatrix<T>> const& optionalTransitionRewardMatrix, boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>> const& optionalChoiceLabeling) : AbstractNondeterministicModel<T>(transitionMatrix, stateLabeling, optionalStateRewardVector, optionalTransitionRewardMatrix, optionalChoiceLabeling), markovianStates(markovianStates), exitRates(exitRates), closed(false) { this->turnRatesToProbabilities(); if (this->hasTransitionRewards()) { if (!this->getTransitionRewardMatrix().isSubmatrixOf(this->getTransitionMatrix())) { LOG4CPLUS_ERROR(logger, "Transition reward matrix is not a submatrix of the transition matrix, i.e. there are rewards for transitions that do not exist."); throw storm::exceptions::InvalidArgumentException() << "There are transition rewards for nonexistent transitions."; } } } MarkovAutomaton(storm::storage::SparseMatrix<T>&& transitionMatrix, storm::models::AtomicPropositionsLabeling&& stateLabeling, storm::storage::BitVector const& markovianStates, std::vector<T> const& exitRates, boost::optional<std::vector<T>>&& optionalStateRewardVector, boost::optional<storm::storage::SparseMatrix<T>>&& optionalTransitionRewardMatrix, boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>>&& optionalChoiceLabeling) : AbstractNondeterministicModel<T>(std::move(transitionMatrix), std::move(stateLabeling), std::move(optionalStateRewardVector), std::move(optionalTransitionRewardMatrix), std::move(optionalChoiceLabeling)), markovianStates(markovianStates), exitRates(std::move(exitRates)), closed(false) { this->turnRatesToProbabilities(); if (this->hasTransitionRewards()) { if (!this->getTransitionRewardMatrix().isSubmatrixOf(this->getTransitionMatrix())) { LOG4CPLUS_ERROR(logger, "Transition reward matrix is not a submatrix of the transition matrix, i.e. there are rewards for transitions that do not exist."); throw storm::exceptions::InvalidArgumentException() << "There are transition rewards for nonexistent transitions."; } } } MarkovAutomaton(MarkovAutomaton<T> const& markovAutomaton) : AbstractNondeterministicModel<T>(markovAutomaton), markovianStates(markovAutomaton.markovianStates), exitRates(markovAutomaton.exitRates), closed(markovAutomaton.closed) { // Intentionally left empty. } MarkovAutomaton(MarkovAutomaton<T>&& markovAutomaton) : AbstractNondeterministicModel<T>(std::move(markovAutomaton)), markovianStates(std::move(markovAutomaton.markovianStates)), exitRates(std::move(markovAutomaton.exitRates)), closed(markovAutomaton.closed) { // Intentionally left empty. } ~MarkovAutomaton() { // Intentionally left empty. } storm::models::ModelType getType() const { return MA; } bool isClosed() const { return closed; } bool isHybridState(uint_fast64_t state) const { return isMarkovianState(state) && (this->getTransitionMatrix().getRowGroupSize(state) > 1); } bool isMarkovianState(uint_fast64_t state) const { return this->markovianStates.get(state); } bool isProbabilisticState(uint_fast64_t state) const { return !this->markovianStates.get(state); } std::vector<T> const& getExitRates() const { return this->exitRates; } T const& getExitRate(uint_fast64_t state) const { return this->exitRates[state]; } T getMaximalExitRate() const { T result = storm::utility::constantZero<T>(); for (auto markovianState : this->markovianStates) { result = std::max(result, this->exitRates[markovianState]); } return result; } storm::storage::BitVector const& getMarkovianStates() const { return this->markovianStates; } void close() { if (!closed) { // First, count the number of hybrid states to know how many Markovian choices // will be removed. uint_fast64_t numberOfHybridStates = 0; for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { if (this->isHybridState(state)) { ++numberOfHybridStates; } } // Then compute how many rows the new matrix is going to have. uint_fast64_t newNumberOfRows = this->getNumberOfChoices() - numberOfHybridStates; // Create the matrix for the new transition relation and the corresponding nondeterministic choice vector. storm::storage::SparseMatrixBuilder<T> newTransitionMatrixBuilder(0, 0, 0, true, this->getNumberOfStates() + 1); // Now copy over all choices that need to be kept. uint_fast64_t currentChoice = 0; for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { // If the state is a hybrid state, closing it will make it a probabilistic state, so we remove the Markovian marking. if (this->isHybridState(state)) { this->markovianStates.set(state, false); } // Record the new beginning of choices of this state. newTransitionMatrixBuilder.newRowGroup(currentChoice); // If we are currently treating a hybrid state, we need to skip its first choice. if (this->isHybridState(state)) { // Remove the Markovian state marking. this->markovianStates.set(state, false); } for (uint_fast64_t row = this->getTransitionMatrix().getRowGroupIndices()[state] + (this->isHybridState(state) ? 1 : 0); row < this->getTransitionMatrix().getRowGroupIndices()[state + 1]; ++row) { for (auto const& entry : this->transitionMatrix.getRow(row)) { newTransitionMatrixBuilder.addNextValue(currentChoice, entry.first, entry.second); } ++currentChoice; } } // Finalize the matrix and put the new transition data in place. this->transitionMatrix = newTransitionMatrixBuilder.build(); // Mark the automaton as closed. closed = true; } } virtual std::shared_ptr<AbstractModel<T>> applyScheduler(storm::storage::Scheduler const& scheduler) const override { if (!closed) { throw storm::exceptions::InvalidStateException() << "Applying a scheduler to a non-closed Markov automaton is illegal; it needs to be closed first."; } storm::storage::SparseMatrix<T> newTransitionMatrix = storm::utility::matrix::applyScheduler(this->getTransitionMatrix(), scheduler); return std::shared_ptr<AbstractModel<T>>(new MarkovAutomaton(newTransitionMatrix, this->getStateLabeling(), markovianStates, exitRates, this->hasStateRewards() ? this->getStateRewardVector() : boost::optional<std::vector<T>>(), this->hasTransitionRewards() ? this->getTransitionRewardMatrix() : boost::optional<storm::storage::SparseMatrix<T>>(), this->hasChoiceLabeling() ? this->getChoiceLabeling() : boost::optional<std::vector<boost::container::flat_set<uint_fast64_t>>>())); } virtual void writeDotToStream(std::ostream& outStream, bool includeLabeling = true, storm::storage::BitVector const* subsystem = nullptr, std::vector<T> const* firstValue = nullptr, std::vector<T> const* secondValue = nullptr, std::vector<uint_fast64_t> const* stateColoring = nullptr, std::vector<std::string> const* colors = nullptr, std::vector<uint_fast64_t>* scheduler = nullptr, bool finalizeOutput = true) const override { AbstractModel<T>::writeDotToStream(outStream, includeLabeling, subsystem, firstValue, secondValue, stateColoring, colors, scheduler, false); // Write the probability distributions for all the states. for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { uint_fast64_t rowCount = this->getTransitionMatrix().getRowGroupIndices()[state + 1] - this->getTransitionMatrix().getRowGroupIndices()[state]; bool highlightChoice = true; // For this, we need to iterate over all available nondeterministic choices in the current state. for (uint_fast64_t choice = 0; choice < rowCount; ++choice) { typename storm::storage::SparseMatrix<T>::const_rows row = this->transitionMatrix.getRow(this->getTransitionMatrix().getRowGroupIndices()[state] + choice); if (scheduler != nullptr) { // If the scheduler picked the current choice, we will not make it dotted, but highlight it. if ((*scheduler)[state] == choice) { highlightChoice = true; } else { highlightChoice = false; } } // If it's not a Markovian state or the current row is the first choice for this state, then we // are dealing with a probabilitic choice. if (!markovianStates.get(state) || choice != 0) { // For each nondeterministic choice, we draw an arrow to an intermediate node to better display // the grouping of transitions. outStream << "\t\"" << state << "c" << choice << "\" [shape = \"point\""; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << ", fillcolor=\"red\""; } } outStream << "];" << std::endl; outStream << "\t" << state << " -> \"" << state << "c" << choice << "\""; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << " [color=\"red\", penwidth = 2]"; } else { outStream << " [style = \"dotted\"]"; } } outStream << ";" << std::endl; // Now draw all probabilitic arcs that belong to this nondeterminstic choice. for (auto const& transition : row) { if (subsystem == nullptr || subsystem->get(transition.first)) { outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.first << " [ label= \"" << transition.second << "\" ]"; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << " [color=\"red\", penwidth = 2]"; } else { outStream << " [style = \"dotted\"]"; } } outStream << ";" << std::endl; } } } else { // In this case we are emitting a Markovian choice, so draw the arrows directly to the target states. for (auto const& transition : row) { if (subsystem == nullptr || subsystem->get(transition.first)) { outStream << "\t\"" << state << "\" -> " << transition.first << " [ label= \"" << transition.second << " (" << this->exitRates[state] << ")\" ]"; } } } } } if (finalizeOutput) { outStream << "}" << std::endl; } } private: /*! * Under the assumption that the Markovian choices of this Markov automaton are expressed in terms of rates in the transition matrix, this procedure turns * the rates into the corresponding probabilities by dividing each entry by the exit rate of the state. */ void turnRatesToProbabilities() { for (auto state : this->markovianStates) { for (auto& transition : this->transitionMatrix.getRowGroup(state)) { transition.second /= this->exitRates[state]; } } } storm::storage::BitVector markovianStates; std::vector<T> exitRates; bool closed; }; } } #endif /* STORM_MODELS_MA_H_ */