#include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h" #include <vector> #include <memory> #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "src/storage/StronglyConnectedComponentDecomposition.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { template<typename ValueType> SparseDtmcPrctlModelChecker<ValueType>::SparseDtmcPrctlModelChecker(storm::models::Dtmc<ValueType> const& model, std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>>&& linearEquationSolver) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolver(std::move(linearEquationSolver)) { // Intentionally left empty. } template<typename ValueType> SparseDtmcPrctlModelChecker<ValueType>::SparseDtmcPrctlModelChecker(storm::models::Dtmc<ValueType> const& model) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolver(storm::utility::solver::getLinearEquationSolver<ValueType>()) { // Intentionally left empty. } template<typename ValueType> bool SparseDtmcPrctlModelChecker<ValueType>::canHandle(storm::logic::Formula const& formula) const { return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula(); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const { std::vector<ValueType> result(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>()); // If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis. storm::storage::BitVector statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(this->getModel().getBackwardTransitions(), phiStates, psiStates, true, stepBound); STORM_LOG_INFO("Found " << statesWithProbabilityGreater0.getNumberOfSetBits() << " 'maybe' states."); if (!statesWithProbabilityGreater0.empty()) { // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, statesWithProbabilityGreater0, statesWithProbabilityGreater0, true); // Compute the new set of target states in the reduced system. storm::storage::BitVector rightStatesInReducedSystem = psiStates % statesWithProbabilityGreater0; // Make all rows absorbing that satisfy the second sub-formula. submatrix.makeRowsAbsorbing(rightStatesInReducedSystem); // Create the vector with which to multiply. std::vector<ValueType> subresult(statesWithProbabilityGreater0.getNumberOfSetBits()); storm::utility::vector::setVectorValues(subresult, rightStatesInReducedSystem, storm::utility::one<ValueType>()); // Perform the matrix vector multiplication as often as required by the formula bound. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->performMatrixVectorMultiplication(submatrix, subresult, nullptr, stepBound); // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, subresult); storm::utility::vector::setVectorValues<ValueType>(result, ~statesWithProbabilityGreater0, storm::utility::zero<ValueType>()); } return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();; ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getUpperBound()))); return result; } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeNextProbabilitiesHelper(storm::storage::BitVector const& nextStates) { // Create the vector with which to multiply and initialize it correctly. std::vector<ValueType> result(this->getModel().getNumberOfStates()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>()); // Perform one single matrix-vector multiplication. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), result); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(subResult.getTruthValuesVector()))); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative) const { // We need to identify the states which have to be taken out of the matrix, i.e. // all states that have probability 0 and 1 of satisfying the until-formula. std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(this->getModel(), phiStates, psiStates); storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second); // Perform some logging. storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(this->getModel().getNumberOfStates()); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5)); } else { if (!maybeStates.empty()) { // In this case we have have to compute the probabilities. // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, true); // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); // Initialize the x vector with 0.5 for each element. This is the initial guess for // the iterative solvers. It should be safe as for all 'maybe' states we know that the // probability is strictly larger than 0. std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5)); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, statesWithProbability1); // Now solve the created system of linear equations. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->solveEquationSystem(submatrix, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>()); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();; ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();; return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative))); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeCumulativeRewardsHelper(uint_fast64_t stepBound) const { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. std::vector<ValueType> totalRewardVector; if (this->getModel().hasTransitionRewards()) { totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix()); if (this->getModel().hasStateRewards()) { storm::utility::vector::addVectorsInPlace(totalRewardVector, this->getModel().getStateRewardVector()); } } else { totalRewardVector = std::vector<ValueType>(this->getModel().getStateRewardVector()); } // Initialize result to either the state rewards of the model or the null vector. std::vector<ValueType> result; if (this->getModel().hasStateRewards()) { result = std::vector<ValueType>(this->getModel().getStateRewardVector()); } else { result.resize(this->getModel().getNumberOfStates()); } // Perform the matrix vector multiplication as often as required by the formula bound. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), result, &totalRewardVector, stepBound); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardPathFormula.getStepBound()))); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeInstantaneousRewardsHelper(uint_fast64_t stepCount) const { // Only compute the result if the model has a state-based reward this->getModel(). STORM_LOG_THROW(this->getModel().hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Initialize result to state rewards of the this->getModel(). std::vector<ValueType> result(this->getModel().getStateRewardVector()); // Perform the matrix vector multiplication as often as required by the formula bound. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->performMatrixVectorMultiplication(this->getModel().getTransitionMatrix(), result, nullptr, stepCount); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardPathFormula.getStepCount()))); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeReachabilityRewardsHelper(storm::storage::BitVector const& targetStates, bool qualitative) const { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true); storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(this->getModel().getBackwardTransitions(), trueStates, targetStates); infinityStates.complement(); storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates; STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(this->getModel().getNumberOfStates()); // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>()); } else { // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, true); // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); // Initialize the x vector with 1 for each element. This is the initial guess for // the iterative solvers. std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>()); // Prepare the right-hand side of the equation system. std::vector<ValueType> b(submatrix.getRowCount()); if (this->getModel().hasTransitionRewards()) { // If a transition-based reward model is available, we initialize the right-hand // side to the vector resulting from summing the rows of the pointwise product // of the transition probability matrix and the transition reward matrix. std::vector<ValueType> pointwiseProductRowSumVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix()); storm::utility::vector::selectVectorValues(b, maybeStates, pointwiseProductRowSumVector); if (this->getModel().hasStateRewards()) { // If a state-based reward model is also available, we need to add this vector // as well. As the state reward vector contains entries not just for the states // that we still consider (i.e. maybeStates), we need to extract these values // first. std::vector<ValueType> subStateRewards(b.size()); storm::utility::vector::selectVectorValues(subStateRewards, maybeStates, this->getModel().getStateRewardVector()); storm::utility::vector::addVectorsInPlace(b, subStateRewards); } } else { // If only a state-based reward model is available, we take this vector as the // right-hand side. As the state reward vector contains entries not just for the // states that we still consider (i.e. maybeStates), we need to extract these values // first. storm::utility::vector::selectVectorValues(b, maybeStates, this->getModel().getStateRewardVector()); } // Now solve the resulting equation system. STORM_LOG_THROW(linearEquationSolver != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available."); this->linearEquationSolver->solveEquationSystem(submatrix, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, targetStates, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(subResult.getTruthValuesVector(), qualitative))); } template<typename ValueType> std::vector<ValueType> SparseDtmcPrctlModelChecker<ValueType>::computeLongRunAverageHelper(bool minimize, storm::storage::BitVector const& psiStates, bool qualitative) const { // If there are no goal states, we avoid the computation and directly return zero. auto numOfStates = this->getModel().getNumberOfStates(); if (psiStates.empty()) { return std::vector<ValueType>(numOfStates, storm::utility::zero<ValueType>()); } // Likewise, if all bits are set, we can avoid the computation and set. if ((~psiStates).empty()) { return std::vector<ValueType>(numOfStates, storm::utility::one<ValueType>()); } // Start by decomposing the DTMC into its BSCCs. storm::storage::StronglyConnectedComponentDecomposition<double> bsccDecomposition(this->getModelAs<storm::models::AbstractModel<ValueType>>(), false, true); // Get some data members for convenience. typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix(); // Now start with compute the long-run average for all BSCCs in isolation. std::vector<ValueType> lraValuesForBsccs; // While doing so, we already gather some information for the following steps. std::vector<uint_fast64_t> stateToBsccIndexMap(numOfStates); storm::storage::BitVector statesInBsccs(numOfStates); for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) { storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex]; // Gather information for later use. for (auto const& state : bscc) { statesInBsccs.set(state); stateToBsccIndexMap[state] = currentBsccIndex; } // Compute the LRA value for the current BSCC lraValuesForBsccs.push_back(this->computeLraForBSCC(transitionMatrix, psiStates, bscc)); } // For fast transition rewriting, we build some auxiliary data structures. storm::storage::BitVector statesNotContainedInAnyBscc = ~statesInBsccs; // Prepare result vector. std::vector<ValueType> result(numOfStates); //Set the values for all states in BSCCs. for (auto state : statesInBsccs) { result[state] = lraValuesForBsccs[stateToBsccIndexMap[state]]; } //for all states not in any bscc set the result to the minimal/maximal value of the reachable BSCCs //there might be a more efficient way to do this... for (auto state : statesNotContainedInAnyBscc){ //calculate what result values the reachable states in BSCCs have storm::storage::BitVector currentState(numOfStates); currentState.set(state); storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates( transitionMatrix, currentState, storm::storage::BitVector(numOfStates, true), statesInBsccs ); storm::storage::BitVector reachableBsccStates = statesInBsccs & reachableStates; std::vector<ValueType> reachableResults(reachableBsccStates.getNumberOfSetBits()); storm::utility::vector::selectVectorValues(reachableResults, reachableBsccStates, result); //now select the minimal/maximal element if (minimize){ result[state] = *std::min_element(reachableResults.begin(), reachableResults.end()); } else { result[state] = *std::max_element(reachableResults.begin(), reachableResults.end()); } } return result; } template<typename ValueType> std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<ValueType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeLongRunAverageHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector(), qualitative))); } template<typename ValueType> ValueType SparseDtmcPrctlModelChecker<ValueType>::computeLraForBSCC(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::StronglyConnectedComponent const& bscc) { //if size is one we can immediately derive the result if (bscc.size() == 1){ if (psiStates.get(*(bscc.begin()))) { return storm::utility::one<ValueType>(); } else{ return storm::utility::zero<ValueType>(); } } std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = storm::utility::solver::getLinearEquationSolver<ValueType>(); storm::storage::BitVector subsystem = storm::storage::BitVector(transitionMatrix.getRowCount()); subsystem.set(bscc.begin(), bscc.end()); //we now have to solve ((P')^t - I) * x = 0, where P' is the submatrix of transitionMatrix, // ^t means transose, and I is the identity matrix. storm::storage::SparseMatrix<ValueType> subsystemMatrix = transitionMatrix.getSubmatrix(false, subsystem, subsystem, true); subsystemMatrix = subsystemMatrix.transpose(); // subtract 1 on the diagonal and at the same time add a row with all ones to enforce that the result of the equation system is unique storm::storage::SparseMatrixBuilder<ValueType> equationSystemBuilder(subsystemMatrix.getRowCount() + 1, subsystemMatrix.getColumnCount(), subsystemMatrix.getEntryCount() + subsystemMatrix.getColumnCount()); ValueType one = storm::utility::one<ValueType>(); ValueType zero = storm::utility::zero<ValueType>(); bool foundDiagonalElement = false; for (uint_fast64_t row = 0; row < subsystemMatrix.getRowCount(); ++row) { for (auto& entry : subsystemMatrix.getRowGroup(row)) { if (entry.getColumn() == row) { equationSystemBuilder.addNextValue(row, entry.getColumn(), entry.getValue() - one); foundDiagonalElement = true; } else { equationSystemBuilder.addNextValue(row, entry.getColumn(), entry.getValue()); } } // Throw an exception if a row did not have an element on the diagonal. STORM_LOG_THROW(foundDiagonalElement, storm::exceptions::InvalidOperationException, "Internal Error, no diagonal entry found."); } for (uint_fast64_t column = 0; column + 1 < subsystemMatrix.getColumnCount(); ++column) { equationSystemBuilder.addNextValue(subsystemMatrix.getRowCount(), column, one); } equationSystemBuilder.addNextValue(subsystemMatrix.getRowCount(), subsystemMatrix.getColumnCount() - 1, zero); subsystemMatrix = equationSystemBuilder.build(); // create x and b for the equation system. setting the last entry of b to one enforces the sum over the unique solution vector is one std::vector<ValueType> steadyStateDist(subsystemMatrix.getRowCount(), zero); std::vector<ValueType> b(subsystemMatrix.getRowCount(), zero); b[subsystemMatrix.getRowCount() - 1] = one; solver->solveEquationSystem(subsystemMatrix, steadyStateDist, b); //remove the last entry of the vector as it was just there to enforce the unique solution steadyStateDist.pop_back(); //calculate the fraction we spend in psi states on the long run std::vector<ValueType> steadyStateForPsiStates(transitionMatrix.getRowCount() - 1, zero); storm::utility::vector::setVectorValues(steadyStateForPsiStates, psiStates & subsystem, steadyStateDist); ValueType result = zero; for (auto value : steadyStateForPsiStates) { result += value; } return result; } template<typename ValueType> storm::models::Dtmc<ValueType> const& SparseDtmcPrctlModelChecker<ValueType>::getModel() const { return this->template getModelAs<storm::models::Dtmc<ValueType>>(); } template class SparseDtmcPrctlModelChecker<double>; } }