/* Copyright 2005-2013 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* Bin-packing algorithm that attempts to use minimal number of bins B of size V to contain N items of varying sizes. */ #include #include #include #include "tbb/atomic.h" #include "tbb/task_scheduler_init.h" #include "tbb/tick_count.h" #include "tbb/flow_graph.h" #include "../../common/utility/utility.h" using namespace std; using namespace tbb; using namespace tbb::flow; typedef size_t size_type; // to represent non-zero indices, capacities, etc. typedef size_t value_type; // the type of items we are attempting to pack into bins typedef vector bin; // we use a simple vector to represent a bin // Our bin packers will be function nodes in the graph that take value_type items and // return a dummy value. They will also implicitly send packed bins to the bin_buffer // node, and unused items back to the value_pool node: typedef function_node bin_packer; // Items are placed into a pool that all bin packers grab from, represent by a queue_node: typedef queue_node value_pool; // Packed bins are placed in this buffer waiting to be serially printed and/or accounted for: typedef buffer_node bin_buffer; // Packed bins are taken from the_bin_buffer and processed by the_writer: typedef function_node bin_writer; // Items are injected into the graph when this node sends them to the_value_pool: typedef source_node value_source; // User-specified globals with default values size_type V = 42; // desired capacity for each bin size_type N = 1000; // number of elements to generate bool verbose = false; // prints bin details and other diagnostics to screen bool silent = false; // suppress all output except for time int num_bin_packers=-1; // number of concurrent bin packers in operation; default is #threads; // larger values can result in more bins at less than full capacity size_type optimality=1; // 1 (default) is highest the algorithm can obtain; larger numbers run faster // Calculated globals size_type min_B; // lower bound on the optimal number of bins size_type B; // the answer, i.e. number of bins used by the algorithm size_type *input_array; // stores randomly generated input values value_type item_sum; // sum of all randomly generated input values atomic packed_sum; // sum of all values currently packed into all bins atomic packed_items; // number of values currently packed into all bins atomic active_bins; // number of active bin_packers bin_packer **bins; // the array of bin packers // This class is the Body type for bin_packer class bin_filler { bin my_bin; // the current bin that this bin_filler is packing size_type my_used; // capacity of bin used by current contents (not to be confused with my_bin.size()) size_type relax, relax_val; // relaxation counter for determining when to settle for a non-full bin bin_packer* my_bin_packer; // ptr to the bin packer that this body object is associated with size_type bin_index; // index of the encapsulating bin packer in the global bins array value_pool* the_value_pool; // ptr to the pool of items to pack bin_buffer* the_bin_buffer; // ptr to the buffer of resulting bins value_type looking_for; // the minimum size of item this bin_packer will accept bool done; // flag to indicate that this binpacker has been deactivated public: bin_filler(size_t bidx, value_pool* q, bin_buffer* r) : my_used(0), relax(0), relax_val(0), my_bin_packer(NULL), bin_index(bidx), the_value_pool(q), the_bin_buffer(r), looking_for(V), done(false) {} continue_msg operator()(const value_type& item) { if (!my_bin_packer) my_bin_packer = bins[bin_index]; if (done) the_value_pool->try_put(item); // this bin_packer is done packing items; put item back to pool else if (item > V) { // signal that packed_sum has reached item_sum at some point size_type remaining = active_bins--; if (remaining == 1 && packed_sum == item_sum) { // this is the last bin and it has seen everything // this bin_packer may not have seen everything, so stay active if (my_used>0) the_bin_buffer->try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = V; ++active_bins; } else if (remaining == 1) { // this is the last bin, but there are remaining items the_value_pool->try_put(V+1); // send out signal ++active_bins; } else if (remaining > 1) { // this is not the last bin; deactivate if (my_used < V/(1+optimality*.1)) { // this bin is ill-utilized; throw back items and deactivate packed_sum -= my_used; packed_items -= my_bin.size(); for (size_type i=0; itry_put(my_bin[i]); the_value_pool->remove_successor(*my_bin_packer); // deactivate done = true; the_value_pool->try_put(V+1); // send out signal } else { // this bin is well-utilized; send out bin and deactivate the_value_pool->remove_successor(*my_bin_packer); // build no more bins done = true; if (my_used>0) the_bin_buffer->try_put(my_bin); the_value_pool->try_put(V+1); // send out signal } } } else if (item <= V-my_used && item >= looking_for) { // this item can be packed my_bin.push_back(item); my_used += item; packed_sum += item; ++packed_items; looking_for = V-my_used; relax = 0; if (packed_sum == item_sum) { the_value_pool->try_put(V+1); // send out signal } if (my_used == V) { the_bin_buffer->try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = V; } } else { // this item can't be packed; relax constraints ++relax; if (relax >= (N-packed_items)/optimality) { // this bin_packer has looked through enough items relax = 0; --looking_for; // accept a wider range of items if (looking_for == 0 && my_used < V/(1+optimality*.1) && my_used > 0 && active_bins > 1) { // this bin_packer is ill-utilized and can't find items; deactivate and throw back items size_type remaining = active_bins--; if (remaining > 1) { // not the last bin_packer the_value_pool->remove_successor(*my_bin_packer); // deactivate done = true; } else active_bins++; // can't deactivate last bin_packer packed_sum -= my_used; packed_items -= my_bin.size(); for (size_type i=0; itry_put(my_bin[i]); my_bin.clear(); my_used = 0; } else if (looking_for == 0 && (my_used >= V/(1+optimality*.1) || active_bins == 1)) { // this bin_packer can't find items but is well-utilized, so send it out and reset the_bin_buffer->try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = V; } } the_value_pool->try_put(item); // put unused item back to pool } return continue_msg(); // need to return something } }; // source node uses this to send the values to the value_pool class item_generator { size_type counter; public: item_generator() : counter(0) {} bool operator()(value_type& m) { if (counter my_max) my_max = sum; avg += sum; running_count += sum; if (verbose) cout << "]=" << sum << "; Done/Packed/Total cap: " << running_count << "/" << packed_sum << "/" << item_sum << " items:" << item_count << "/" << packed_items << "/" << N << " B=" << B << endl; if (item_count == N) { // should be the last; print stats avg = avg/(double)B; if (!silent) cout << "SUMMARY: #Bins used: " << B << "; Avg size: " << avg << "; Max size: " << my_max << "; Min size: " << my_min << "\n Lower bound on optimal #bins: " << min_B << "; Start #bins: " << num_bin_packers << endl; } return continue_msg(); // need to return something } }; int get_default_num_threads() { static int threads = 0; if (threads == 0) threads = tbb::task_scheduler_init::default_num_threads(); return threads; } int main(int argc, char *argv[]) { try { utility::thread_number_range threads(get_default_num_threads); utility::parse_cli_arguments(argc, argv, utility::cli_argument_pack() //"-h" option for for displaying help is present implicitly .positional_arg(threads,"#threads",utility::thread_number_range_desc) .arg(verbose,"verbose"," print diagnostic output to screen") .arg(silent,"silent"," limits output to timing info; overrides verbose") .arg(N,"N"," number of values to pack") .arg(V,"V"," capacity of each bin") .arg(num_bin_packers,"#packers"," number of concurrent bin packers to use " "(default=#threads)") .arg(optimality,"optimality","controls optimality of solution; 1 is highest, use\n" " larger numbers for less optimal but faster solution") ); if (silent) verbose = false; // make silent override verbose // Generate random input data srand(42); input_array = new value_type[N]; item_sum = 0; for (size_type i=0; i