#ifndef MILPPERMISSIVESCHEDULERS_H #define MILPPERMISSIVESCHEDULERS_H #include <memory> #include <unordered_map> #include "PermissiveSchedulerComputation.h" #include "../storage/BitVector.h" #include "../storage/StateActionPair.h" #include "../storage/StateActionTargetTuple.h" #include "../storage/expressions/Variable.h" #include "../solver/LpSolver.h" namespace storm { namespace ps { class MilpPermissiveSchedulerComputation : public PermissiveSchedulerComputation { private: bool mCalledOptimizer = false; storm::solver::LpSolver& solver; std::unordered_map<storm::storage::StateActionPair, storm::expressions::Variable> multistrategyVariables; std::unordered_map<uint_fast64_t, storm::expressions::Variable> mProbVariables; std::unordered_map<uint_fast64_t, storm::expressions::Variable> mAlphaVariables; std::unordered_map<storm::storage::StateActionTarget, storm::expressions::Variable> mBetaVariables; std::unordered_map<uint_fast64_t, storm::expressions::Variable> mGammaVariables; public: MilpPermissiveSchedulerComputation(storm::solver::LpSolver& milpsolver, std::shared_ptr<storm::models::sparse::Mdp<double>> mdp, storm::storage::BitVector const& goalstates, storm::storage::BitVector const& sinkstates) : PermissiveSchedulerComputation(mdp, goalstates, sinkstates), solver(milpsolver) { } void calculatePermissiveScheduler(double boundary) override { createMILP(boundary, mPenalties); solver.optimize(); mCalledOptimizer = true; } bool foundSolution() const override { assert(mCalledOptimizer); return !solver.isInfeasible(); } MemorylessDeterministicPermissiveScheduler && getScheduler() const override { storm::storage::BitVector result(mdp->getNumberOfChoices(), true); for(auto const& entry : multistrategyVariables) { if(!solver.getBinaryValue(entry.second)) { result.set(mdp->getNondeterministicChoiceIndices()[entry.first.getState()]+entry.first.getAction(), false); } } return std::move<MemorylessDeterministicPermissiveScheduler>(result); } private: /** * */ void createVariables(PermissiveSchedulerPenalties const& penalties, storm::storage::BitVector const& relevantStates) { // We need the unique initial state later, so we get that one before looping. assert(mdp->getInitialStates().getNumberOfSetBits() == 1); uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0); storm::expressions::Variable var; for(uint_fast64_t s : relevantStates) { // Create x_s variables // Notice that only the initial probability appears in the objective. if(s == initialStateIndex) { var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0, -1.0); } else { var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0); } mProbVariables[s] = var; // Create alpha_s variables var = solver.addBinaryVariable("alp_" + std::to_string(s)); mAlphaVariables[s] = var; // Create gamma_s variables var = solver.addBoundedContinuousVariable("gam_" + std::to_string(s), 0.0, 1.0); mGammaVariables[s] = var; for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { auto stateAndAction = storage::StateActionPair(s,a); // Create y_(s,a) variables double penalty = penalties.get(stateAndAction); var = solver.addBinaryVariable("y_" + std::to_string(s) + "_" + std::to_string(a), -penalty); multistrategyVariables[stateAndAction] = var; // Create beta_(s,a,t) variables // Iterate over successors of s via a. for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { storage::StateActionTarget sat = {s,a,entry.getColumn()}; var = solver.addBinaryVariable("beta_" + to_string(sat)); mBetaVariables[sat] = var; } } } } } void createConstraints(double boundary, storm::storage::BitVector const& relevantStates) { // (5) and (7) are omitted on purpose (-- we currenty do not support controllability of actions -- ) // (1) assert(mdp->getInitialStates().getNumberOfSetBits() == 1); uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0); solver.addConstraint("c1", mProbVariables[initialStateIndex] >= solver.getConstant(boundary)); for(uint_fast64_t s : relevantStates) { std::string stateString = std::to_string(s); storm::expressions::Expression expr = solver.getConstant(0.0); // (2) for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { expr = expr + multistrategyVariables[storage::StateActionPair(s,a)]; } solver.addConstraint("c2-" + stateString, solver.getConstant(1) <= expr); // (5) solver.addConstraint("c5-" + std::to_string(s), mProbVariables[s] <= mAlphaVariables[s]); // (3) For the relevant states. for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { std::string sastring(stateString + "_" + std::to_string(a)); expr = solver.getConstant(0.0); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0 && relevantStates.get(entry.getColumn())) { expr = expr + solver.getConstant(entry.getValue()) * mProbVariables[entry.getColumn()]; } else if (entry.getValue() != 0 && mGoals.get(entry.getColumn())) { expr = expr + solver.getConstant(entry.getValue()); } } solver.addConstraint("c3-" + sastring, mProbVariables[s] < (solver.getConstant(1) - multistrategyVariables[storage::StateActionPair(s,a)]) + expr); } for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) { // (6) std::string sastring(stateString + "_" + std::to_string(a)); expr = solver.getConstant(0.0); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { storage::StateActionTarget sat = {s,a,entry.getColumn()}; expr = expr + mBetaVariables[sat]; } } solver.addConstraint("c6-" + sastring, multistrategyVariables[storage::StateActionPair(s,a)] == (solver.getConstant(1) - mAlphaVariables[s]) + expr); for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) { if(entry.getValue() != 0) { storage::StateActionTarget sat = {s,a,entry.getColumn()}; std::string satstring = to_string(sat); // (8) assert(mGammaVariables.count(entry.getColumn()) > 0); assert(mGammaVariables.count(s) > 0); assert(mBetaVariables.count(sat) > 0); if(relevantStates[entry.getColumn()]) { solver.addConstraint("c8-" + satstring, mGammaVariables[entry.getColumn()] < mGammaVariables[s] + (solver.getConstant(1) - mBetaVariables[sat]) + mProbVariables[s]); // With rewards, we have to change this. } } } } } } /** * */ void createMILP(double boundary, PermissiveSchedulerPenalties const& penalties) { storm::storage::BitVector irrelevant = mGoals | mSinks; storm::storage::BitVector relevantStates = ~irrelevant; // Notice that the separated construction of variables and // constraints slows down the construction of the MILP. // In the future, we might want to merge this. createVariables(penalties, relevantStates); createConstraints(boundary, relevantStates); solver.setModelSense(storm::solver::LpSolver::ModelSense::Minimize); } }; } } #endif /* MILPPERMISSIVESCHEDULERS_H */