#include "storm/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h" #include "storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h" #include "storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h" #include "storm/modelchecker/helper/utility/SetInformationFromCheckTask.h" #include "storm/modelchecker/helper/ltl/SparseLTLHelper.h" #include "storm/modelchecker/multiobjective/multiObjectiveModelChecking.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/utility/FilteredRewardModel.h" #include "storm/utility/macros.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/GeneralSettings.h" #include "storm/settings/modules/DebugSettings.h" #include "storm/solver/SolveGoal.h" #include "storm/transformer/ContinuousToDiscreteTimeModelTransformer.h" #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "storm/logic/FragmentSpecification.h" #include "storm/logic/ExtractMaximalStateFormulasVisitor.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/exceptions/NotImplementedException.h" #include "storm/api/storm.h" namespace storm { namespace modelchecker { template<typename SparseMarkovAutomatonModelType> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::SparseMarkovAutomatonCslModelChecker(SparseMarkovAutomatonModelType const& model) : SparsePropositionalModelChecker<SparseMarkovAutomatonModelType>(model) { // Intentionally left empty. } template <typename ModelType> bool SparseMarkovAutomatonCslModelChecker<ModelType>::canHandleStatic(CheckTask<storm::logic::Formula, ValueType> const& checkTask, bool* requiresSingleInitialState) { auto singleObjectiveFragment = storm::logic::csl().setGloballyFormulasAllowed(true).setNextFormulasAllowed(true).setNestedPathFormulasAllowed(true).setRewardOperatorsAllowed(true).setReachabilityRewardFormulasAllowed(true).setTotalRewardFormulasAllowed(true).setTimeAllowed(true).setLongRunAverageProbabilitiesAllowed(true).setLongRunAverageRewardFormulasAllowed(true).setRewardAccumulationAllowed(true).setInstantaneousFormulasAllowed(false); auto multiObjectiveFragment = storm::logic::multiObjective().setTimeAllowed(true).setTimeBoundedUntilFormulasAllowed(true).setRewardAccumulationAllowed(true); if (!storm::NumberTraits<ValueType>::SupportsExponential) { singleObjectiveFragment.setBoundedUntilFormulasAllowed(false).setCumulativeRewardFormulasAllowed(false); multiObjectiveFragment.setTimeBoundedUntilFormulasAllowed(false).setCumulativeRewardFormulasAllowed(false); } if (checkTask.getFormula().isInFragment(singleObjectiveFragment)) { return true; } else if (checkTask.isOnlyInitialStatesRelevantSet() && checkTask.getFormula().isInFragment(multiObjectiveFragment)) { if (requiresSingleInitialState) { *requiresSingleInitialState = true; } return true; } return false; } template<typename SparseMarkovAutomatonModelType> bool SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::canHandle(CheckTask<storm::logic::Formula, ValueType> const& checkTask) const { bool requiresSingleInitialState = false; if (canHandleStatic(checkTask, &requiresSingleInitialState)) { return !requiresSingleInitialState || this->getModel().getInitialStates().getNumberOfSetBits() == 1; } else { return false; } } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeBoundedUntilProbabilities(Environment const& env, CheckTask<storm::logic::BoundedUntilFormula, ValueType> const& checkTask) { storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute time-bounded reachability probabilities in non-closed Markov automaton."); std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); STORM_LOG_THROW(pathFormula.getTimeBoundReference().isTimeBound(), storm::exceptions::NotImplementedException, "Currently step-bounded and reward-bounded properties on MAs are not supported."); double lowerBound = 0; double upperBound = 0; if (pathFormula.hasLowerBound()) { lowerBound = pathFormula.getLowerBound<double>(); } if (pathFormula.hasUpperBound()) { upperBound = pathFormula.getNonStrictUpperBound<double>(); } else { upperBound = storm::utility::infinity<double>(); } std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), std::make_pair(lowerBound, upperBound)); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeUntilProbabilities(Environment const& env, CheckTask<storm::logic::UntilFormula, ValueType> const& checkTask) { storm::logic::UntilFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeUntilProbabilities(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), checkTask.isProduceSchedulersSet()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeLTLProbabilities(Environment const& env, CheckTask<storm::logic::PathFormula, ValueType> const& checkTask) { storm::logic::PathFormula const& pathFormula = checkTask.getFormula(); STORM_LOG_INFO("Extracting maximal state formulas for path formula: " << pathFormula); std::vector<storm::logic::ExtractMaximalStateFormulasVisitor::LabelFormulaPair> extracted; std::shared_ptr<storm::logic::Formula> ltlFormula = storm::logic::ExtractMaximalStateFormulasVisitor::extract(pathFormula, extracted); const SparseMarkovAutomatonModelType& ma = this->getModel(); typedef typename storm::models::sparse::Mdp<typename SparseMarkovAutomatonModelType::ValueType> SparseMdpModelType; // TODO correct? STORM_LOG_INFO("Computing embedded MDP..."); storm::storage::SparseMatrix<ValueType> probabilityMatrix = ma.getTransitionMatrix(); // Copy of the state labelings of the MDP storm::models::sparse::StateLabeling labeling(ma.getStateLabeling()); // The embedded MDP, used for building the product and computing the probabilities in the product SparseMdpModelType embeddedMdp(std::move(probabilityMatrix), std::move(labeling)); storm::solver::SolveGoal<ValueType> goal(embeddedMdp, checkTask); STORM_LOG_INFO("Performing ltl probability computations in embedded MDP..."); // TODO ? if (storm::settings::getModule<storm::settings::modules::DebugSettings>().isTraceSet()) { STORM_LOG_TRACE("Writing model to model.dot"); std::ofstream modelDot("model.dot"); embeddedMdp.writeDotToStream(modelDot); modelDot.close(); } storm::modelchecker::helper::SparseLTLHelper<ValueType, true> helper(embeddedMdp.getTransitionMatrix(), this->getModel().getNumberOfStates()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, embeddedMdp); // Compute Satisfaction sets for APs auto formulaChecker = [&] (std::shared_ptr<storm::logic::Formula const> const& formula) { return this->check(env, *formula); }; std::map<std::string, storm::storage::BitVector> apSets = helper.computeApSets(extracted, formulaChecker); std::vector<ValueType> numericResult = helper.computeLTLProbabilities(env, *ltlFormula, apSets); // We can directly return the numericResult vector as the state space of the CTMC and the embedded MDP are exactly the same return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeReachabilityRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) { storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute reachability rewards in non-closed Markov automaton."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); auto ret = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeReachabilityRewards(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rewardModel.get(), subResult.getTruthValuesVector(), checkTask.isProduceSchedulersSet()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeTotalRewards(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::TotalRewardFormula, ValueType> const& checkTask) { STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute reachability rewards in non-closed Markov automaton."); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); auto ret = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeTotalRewards(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rewardModel.get(), checkTask.isProduceSchedulersSet()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) { storm::logic::StateFormula const& stateFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long-run average in non-closed Markov automaton."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRates()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel()); auto values = helper.computeLongRunAverageProbabilities(env, subResult.getTruthValuesVector()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values))); if (checkTask.isProduceSchedulersSet()) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler())); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeLongRunAverageRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula, ValueType> const& checkTask) { STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long run average rewards in non-closed Markov automaton."); auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask); storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRates()); storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel()); auto values = helper.computeLongRunAverageRewards(env, rewardModel.get()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values))); if (checkTask.isProduceSchedulersSet()) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler())); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeReachabilityTimes(Environment const& env, storm::logic::RewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) { storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula(); STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute expected times in non-closed Markov automaton."); std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula()); ExplicitQualitativeCheckResult& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto ret = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeReachabilityTimes(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), checkTask.isProduceSchedulersSet()); std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values))); if (checkTask.isProduceSchedulersSet() && ret.scheduler) { result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler)); } return result; } template<typename SparseMarkovAutomatonModelType> std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::checkMultiObjectiveFormula(Environment const& env, CheckTask<storm::logic::MultiObjectiveFormula, ValueType> const& checkTask) { return multiobjective::performMultiObjectiveModelChecking(env, this->getModel(), checkTask.getFormula()); } template class SparseMarkovAutomatonCslModelChecker<storm::models::sparse::MarkovAutomaton<double>>; template class SparseMarkovAutomatonCslModelChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>; } }