#include "storm/models/sparse/MarkovAutomaton.h" #include "storm/adapters/CarlAdapter.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/solver/stateelimination/StateEliminator.h" #include "storm/storage/FlexibleSparseMatrix.h" #include "storm/utility/constants.h" #include "storm/utility/vector.h" #include "storm/utility/macros.h" #include "storm/exceptions/InvalidArgumentException.h" namespace storm { namespace models { namespace sparse { template <typename ValueType, typename RewardModelType> MarkovAutomaton<ValueType, RewardModelType>::MarkovAutomaton(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::models::sparse::StateLabeling const& stateLabeling, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, std::unordered_map<std::string, RewardModelType> const& rewardModels, boost::optional<std::vector<LabelSet>> const& optionalChoiceLabeling) : NondeterministicModel<ValueType, RewardModelType>(storm::models::ModelType::MarkovAutomaton, transitionMatrix, stateLabeling, rewardModels, optionalChoiceLabeling), markovianStates(markovianStates), exitRates(exitRates), closed(this->checkIsClosed()) { this->turnRatesToProbabilities(); } template <typename ValueType, typename RewardModelType> MarkovAutomaton<ValueType, RewardModelType>::MarkovAutomaton(storm::storage::SparseMatrix<ValueType>&& transitionMatrix, storm::models::sparse::StateLabeling&& stateLabeling, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, std::unordered_map<std::string, RewardModelType>&& rewardModels, boost::optional<std::vector<LabelSet>>&& optionalChoiceLabeling) : NondeterministicModel<ValueType, RewardModelType>(storm::models::ModelType::MarkovAutomaton, std::move(transitionMatrix), std::move(stateLabeling), std::move(rewardModels), std::move(optionalChoiceLabeling)), markovianStates(markovianStates), exitRates(std::move(exitRates)), closed(this->checkIsClosed()) { this->turnRatesToProbabilities(); } template <typename ValueType, typename RewardModelType> MarkovAutomaton<ValueType, RewardModelType>::MarkovAutomaton(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::models::sparse::StateLabeling const& stateLabeling, storm::storage::BitVector const& markovianStates, std::unordered_map<std::string, RewardModelType> const& rewardModels, boost::optional<std::vector<LabelSet>> const& optionalChoiceLabeling) : NondeterministicModel<ValueType, RewardModelType>(storm::models::ModelType::MarkovAutomaton, rateMatrix, stateLabeling, rewardModels, optionalChoiceLabeling), markovianStates(markovianStates) { turnRatesToProbabilities(); this->closed = checkIsClosed(); } template <typename ValueType, typename RewardModelType> MarkovAutomaton<ValueType, RewardModelType>::MarkovAutomaton(storm::storage::SparseMatrix<ValueType>&& rateMatrix, storm::models::sparse::StateLabeling&& stateLabeling, storm::storage::BitVector&& markovianStates, std::unordered_map<std::string, RewardModelType>&& rewardModels, boost::optional<std::vector<LabelSet>>&& optionalChoiceLabeling) : NondeterministicModel<ValueType, RewardModelType>(storm::models::ModelType::MarkovAutomaton, rateMatrix, stateLabeling, rewardModels, optionalChoiceLabeling), markovianStates(markovianStates) { turnRatesToProbabilities(); this->closed = checkIsClosed(); } template <typename ValueType, typename RewardModelType> MarkovAutomaton<ValueType, RewardModelType>::MarkovAutomaton(storm::storage::SparseMatrix<ValueType>&& transitionMatrix, storm::models::sparse::StateLabeling&& stateLabeling, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, bool probabilities, std::unordered_map<std::string, RewardModelType>&& rewardModels, boost::optional<std::vector<LabelSet>>&& optionalChoiceLabeling) : NondeterministicModel<ValueType, RewardModelType>(storm::models::ModelType::MarkovAutomaton, std::move(transitionMatrix), std::move(stateLabeling), std::move(rewardModels), std::move(optionalChoiceLabeling)), markovianStates(markovianStates), exitRates(std::move(exitRates)), closed(this->checkIsClosed()) { STORM_LOG_ASSERT(probabilities, "Matrix must be probabilistic."); STORM_LOG_ASSERT(this->getTransitionMatrix().isProbabilistic(), "Matrix must be probabilistic."); } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::isClosed() const { return closed; } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::isHybridState(storm::storage::sparse::state_type state) const { return isMarkovianState(state) && (this->getTransitionMatrix().getRowGroupSize(state) > 1); } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::isMarkovianState(storm::storage::sparse::state_type state) const { return this->markovianStates.get(state); } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::isProbabilisticState(storm::storage::sparse::state_type state) const { return !this->markovianStates.get(state); } template <typename ValueType, typename RewardModelType> std::vector<ValueType> const& MarkovAutomaton<ValueType, RewardModelType>::getExitRates() const { return this->exitRates; } template <typename ValueType, typename RewardModelType> std::vector<ValueType>& MarkovAutomaton<ValueType, RewardModelType>::getExitRates() { return this->exitRates; } template <typename ValueType, typename RewardModelType> ValueType const& MarkovAutomaton<ValueType, RewardModelType>::getExitRate(storm::storage::sparse::state_type state) const { return this->exitRates[state]; } template <typename ValueType, typename RewardModelType> ValueType MarkovAutomaton<ValueType, RewardModelType>::getMaximalExitRate() const { ValueType result = storm::utility::zero<ValueType>(); for (auto markovianState : this->markovianStates) { result = std::max(result, this->exitRates[markovianState]); } return result; } template <typename ValueType, typename RewardModelType> storm::storage::BitVector const& MarkovAutomaton<ValueType, RewardModelType>::getMarkovianStates() const { return this->markovianStates; } template <typename ValueType, typename RewardModelType> void MarkovAutomaton<ValueType, RewardModelType>::close() { if (!closed) { // Get the choices that we will keep storm::storage::BitVector keptChoices(this->getNumberOfChoices(), true); for(auto state : this->getMarkovianStates()) { if(this->getTransitionMatrix().getRowGroupSize(state) > 1) { // The state is hybrid, hence, we remove the first choice. keptChoices.set(this->getTransitionMatrix().getRowGroupIndices()[state], false); // Afterwards, the state will no longer be Markovian. this->markovianStates.set(state, false); exitRates[state] = storm::utility::zero<ValueType>(); } } // Remove the Markovian choices for the different model ingredients this->getTransitionMatrix() = this->getTransitionMatrix().restrictRows(keptChoices); for(auto& rewModel : this->getRewardModels()) { if(rewModel.second.hasStateActionRewards()) { rewModel.second.getStateActionRewardVector() = storm::utility::vector::filterVector(rewModel.second.getStateActionRewardVector(), keptChoices); } if(rewModel.second.hasTransitionRewards()) { rewModel.second.getTransitionRewardMatrix() = rewModel.second.getTransitionRewardMatrix().restrictRows(keptChoices); } } if(this->hasChoiceLabeling()) { this->getOptionalChoiceLabeling() = storm::utility::vector::filterVector(this->getOptionalChoiceLabeling().get(), keptChoices); } // Mark the automaton as closed. closed = true; } } template <typename ValueType, typename RewardModelType> void MarkovAutomaton<ValueType, RewardModelType>::writeDotToStream(std::ostream& outStream, bool includeLabeling, storm::storage::BitVector const* subsystem, std::vector<ValueType> const* firstValue, std::vector<ValueType> const* secondValue, std::vector<uint_fast64_t> const* stateColoring, std::vector<std::string> const* colors, std::vector<uint_fast64_t>* scheduler, bool finalizeOutput) const { Model<ValueType, RewardModelType>::writeDotToStream(outStream, includeLabeling, subsystem, firstValue, secondValue, stateColoring, colors, scheduler, false); // Write the probability distributions for all the states. for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { uint_fast64_t rowCount = this->getTransitionMatrix().getRowGroupIndices()[state + 1] - this->getTransitionMatrix().getRowGroupIndices()[state]; bool highlightChoice = true; // For this, we need to iterate over all available nondeterministic choices in the current state. for (uint_fast64_t choice = 0; choice < rowCount; ++choice) { uint_fast64_t rowIndex = this->getTransitionMatrix().getRowGroupIndices()[state] + choice; typename storm::storage::SparseMatrix<ValueType>::const_rows row = this->getTransitionMatrix().getRow(rowIndex); if (scheduler != nullptr) { // If the scheduler picked the current choice, we will not make it dotted, but highlight it. if ((*scheduler)[state] == choice) { highlightChoice = true; } else { highlightChoice = false; } } // If it's not a Markovian state or the current row is the first choice for this state, then we // are dealing with a probabilitic choice. if (!markovianStates.get(state) || choice != 0) { // For each nondeterministic choice, we draw an arrow to an intermediate node to better display // the grouping of transitions. outStream << "\t\"" << state << "c" << choice << "\" [shape = \"point\""; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << ", fillcolor=\"red\""; } } outStream << "];" << std::endl; outStream << "\t" << state << " -> \"" << state << "c" << choice << "\" [ label= \"" << rowIndex << "\""; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << ", color=\"red\", penwidth = 2"; } else { outStream << ", style = \"dotted\""; } } outStream << "];" << std::endl; // Now draw all probabilitic arcs that belong to this nondeterminstic choice. for (auto const& transition : row) { if (subsystem == nullptr || subsystem->get(transition.getColumn())) { outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.getColumn() << " [ label= \"" << transition.getValue() << "\" ]"; // If we were given a scheduler to highlight, we do so now. if (scheduler != nullptr) { if (highlightChoice) { outStream << " [color=\"red\", penwidth = 2]"; } else { outStream << " [style = \"dotted\"]"; } } outStream << ";" << std::endl; } } } else { // In this case we are emitting a Markovian choice, so draw the arrows directly to the target states. for (auto const& transition : row) { if (subsystem == nullptr || subsystem->get(transition.getColumn())) { outStream << "\t\"" << state << "\" -> " << transition.getColumn() << " [ label= \"" << transition.getValue() << " (" << this->exitRates[state] << ")\" ]"; } } } } } if (finalizeOutput) { outStream << "}" << std::endl; } } template <typename ValueType, typename RewardModelType> void MarkovAutomaton<ValueType, RewardModelType>::turnRatesToProbabilities() { this->exitRates.resize(this->getNumberOfStates()); for (uint_fast64_t state = 0; state< this->getNumberOfStates(); ++state) { uint_fast64_t row = this->getTransitionMatrix().getRowGroupIndices()[state]; if (this->markovianStates.get(state)) { this->exitRates[state] = this->getTransitionMatrix().getRowSum(row); for (auto& transition : this->getTransitionMatrix().getRow(row)) { transition.setValue(transition.getValue() / this->exitRates[state]); } ++row; } for (; row < this->getTransitionMatrix().getRowGroupIndices()[state+1]; ++row) { STORM_LOG_THROW(storm::utility::isOne(this->getTransitionMatrix().getRowSum(row)), storm::exceptions::InvalidArgumentException, "Entries of transition matrix do not sum up to one for (non-Markovian) choice " << row << " of state " << state << " (sum is " << this->getTransitionMatrix().getRowSum(row) << ")."); } } } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::hasOnlyTrivialNondeterminism() const { // Check every state for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { // Get number of choices in current state uint_fast64_t numberChoices = this->getTransitionMatrix().getRowGroupIndices()[state + 1] - this->getTransitionMatrix().getRowGroupIndices()[state]; if (isMarkovianState(state)) { STORM_LOG_ASSERT(numberChoices == 1, "Wrong number of choices for markovian state."); } if (numberChoices > 1) { STORM_LOG_ASSERT(isProbabilisticState(state), "State is not probabilistic."); return false; } } return true; } template <typename ValueType, typename RewardModelType> bool MarkovAutomaton<ValueType, RewardModelType>::checkIsClosed() const { for (auto state : markovianStates) { if (this->getTransitionMatrix().getRowGroupSize(state) > 1) { return false; } } return true; } template <typename ValueType, typename RewardModelType> std::shared_ptr<storm::models::sparse::Ctmc<ValueType, RewardModelType>> MarkovAutomaton<ValueType, RewardModelType>::convertToCTMC() const { STORM_LOG_TRACE("MA matrix:" << std::endl << this->getTransitionMatrix()); STORM_LOG_TRACE("Markovian states: " << getMarkovianStates()); // Eliminate all probabilistic states by state elimination // Initialize storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(this->getTransitionMatrix()); storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(this->getTransitionMatrix().transpose()); storm::solver::stateelimination::StateEliminator<ValueType> stateEliminator(flexibleMatrix, flexibleBackwardTransitions); for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { STORM_LOG_ASSERT(!this->isHybridState(state), "State is hybrid."); if (this->isProbabilisticState(state)) { // Eliminate this probabilistic state stateEliminator.eliminateState(state, true); STORM_LOG_TRACE("Flexible matrix after eliminating state " << state << ":" << std::endl << flexibleMatrix); } } // Create the rate matrix for the CTMC storm::storage::SparseMatrixBuilder<ValueType> transitionMatrixBuilder(0, 0, 0, false, false); // Remember state to keep storm::storage::BitVector keepStates(this->getNumberOfStates(), true); for (uint_fast64_t state = 0; state < this->getNumberOfStates(); ++state) { if (storm::utility::isZero(flexibleMatrix.getRowSum(state))) { // State is eliminated and can be discarded keepStates.set(state, false); } else { STORM_LOG_ASSERT(this->isMarkovianState(state), "State is not markovian."); // Copy transitions for (uint_fast64_t row = flexibleMatrix.getRowGroupIndices()[state]; row < flexibleMatrix.getRowGroupIndices()[state + 1]; ++row) { for (auto const& entry : flexibleMatrix.getRow(row)) { // Convert probabilities into rates transitionMatrixBuilder.addNextValue(state, entry.getColumn(), entry.getValue() * exitRates[state]); } } } } storm::storage::SparseMatrix<ValueType> rateMatrix = transitionMatrixBuilder.build(); rateMatrix = rateMatrix.getSubmatrix(false, keepStates, keepStates, false); STORM_LOG_TRACE("New CTMC matrix:" << std::endl << rateMatrix); // Construct CTMC storm::models::sparse::StateLabeling stateLabeling = this->getStateLabeling().getSubLabeling(keepStates); boost::optional<std::vector<LabelSet>> optionalChoiceLabeling = this->getOptionalChoiceLabeling(); if (optionalChoiceLabeling) { optionalChoiceLabeling = storm::utility::vector::filterVector(optionalChoiceLabeling.get(), keepStates); } //TODO update reward models according to kept states STORM_LOG_WARN_COND(this->getRewardModels().empty(), "Conversion of MA to CTMC does not preserve rewards."); std::unordered_map<std::string, RewardModelType> rewardModels = this->getRewardModels(); return std::make_shared<storm::models::sparse::Ctmc<ValueType, RewardModelType>>(std::move(rateMatrix), std::move(stateLabeling), std::move(rewardModels), std::move(optionalChoiceLabeling)); } template<typename ValueType, typename RewardModelType> void MarkovAutomaton<ValueType, RewardModelType>::printModelInformationToStream(std::ostream& out) const { this->printModelInformationHeaderToStream(out); out << "Choices: \t" << this->getNumberOfChoices() << std::endl; out << "Markovian St.: \t" << this->getMarkovianStates().getNumberOfSetBits() << std::endl; out << "Max. Rate.: \t" << this->getMaximalExitRate() << std::endl; this->printModelInformationFooterToStream(out); } template class MarkovAutomaton<double>; // template class MarkovAutomaton<float>; #ifdef STORM_HAVE_CARL template class MarkovAutomaton<storm::RationalNumber>; template class MarkovAutomaton<double, storm::models::sparse::StandardRewardModel<storm::Interval>>; template class MarkovAutomaton<storm::RationalFunction>; #endif } // namespace sparse } // namespace models } // namespace storm