#include "SparseLTLHelper.h" #include "storm/automata/LTL2DeterministicAutomaton.h" #include "storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h" #include "storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.h" #include "storm/storage/StronglyConnectedComponentDecomposition.h" #include "storm/storage/MaximalEndComponentDecomposition.h" #include "storm/storage/memorystructure/MemoryStructure.h" #include "storm/storage/memorystructure/MemoryStructureBuilder.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/DebugSettings.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/environment/modelchecker/ModelCheckerEnvironment.h" #include "storm/utility/graph.h" namespace storm { namespace modelchecker { namespace helper { template <typename ValueType, bool Nondeterministic> SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : _transitionMatrix(transitionMatrix){ // Intentionally left empty. } template <typename ValueType, bool Nondeterministic> storm::storage::Scheduler<ValueType> SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper::extractScheduler(storm::models::sparse::Model<ValueType> const& model) { STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested."); // If Pmax(phi) = 0 or Pmin(phi) = 1, we return a memoryless scheduler with arbitrary choices if (_randomScheduler) { storm::storage::Scheduler<ValueType> scheduler(this->_transitionMatrix.getRowGroupCount()); for (storm::storage::sparse::state_type state = 0; state < this->_transitionMatrix.getRowGroupCount(); ++state) { scheduler.setChoice(0, state); } return scheduler; } // Otherwise, we compute a scheduler with memory. STORM_LOG_ASSERT(this->_producedChoices.is_initialized(), "Trying to extract the produced scheduler but none is available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_memoryTransitions.is_initialized(), "Trying to extract the DA transition structure but none is available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_memoryInitialStates.is_initialized(), "Trying to extract the initial states of the DA but there are none available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_dontCareStates.is_initialized(), "Trying to extract the Scheduler-dontCare states but there are none available. Was there a computation call before?"); // Create a memory structure for the MDP scheduler with memory. If hasRelevantStates is set, we only consider initial model states relevant. auto memoryBuilder = storm::storage::MemoryStructureBuilder<ValueType>(this->_memoryTransitions.get().size(), model, this->hasRelevantStates()); // Build the transitions between the memory states: startState--- modelStates (transitionVector) --->goalState for (storm::storage::sparse::state_type startState = 0; startState < this->_memoryTransitions.get().size(); ++startState) { for (storm::storage::sparse::state_type goalState = 0; goalState < this->_memoryTransitions.get().size(); ++goalState) { // Bitvector that represents modelStates the model states that trigger this transition. memoryBuilder.setTransition(startState, goalState, this->_memoryTransitions.get()[startState][goalState]); } } // initialMemoryStates: Assign an initial memory state model states if (this->hasRelevantStates()) { // Only consider initial model states for (uint_fast64_t modelState : model.getInitialStates()) { memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates.get()[modelState]); } } else { // All model states are relevant for (uint_fast64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) { memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates.get()[modelState]); } } // Build the memoryStructure. storm::storage::MemoryStructure memoryStructure = memoryBuilder.build(); // Create a scheduler (with memory) for the model from the REACH and MEC scheduler of the MDP-DA-product model. storm::storage::Scheduler<ValueType> scheduler(this->_transitionMatrix.getRowGroupCount(), memoryStructure); // Use choices in the product model to create a choice based on model state and memory state for (const auto &choice : this->_producedChoices.get()) { // <s, q, InfSet> -> choice storm::storage::sparse::state_type modelState = std::get<0>(choice.first); storm::storage::sparse::state_type automatonState = std::get<1>(choice.first); uint_fast64_t infSet = std::get<2>(choice.first); STORM_LOG_ASSERT(!this->_dontCareStates.get()[(automatonState*(_infSets.get().size()+1))+ infSet].get(modelState), "Tried to set choice for dontCare state."); scheduler.setChoice(choice.second, modelState, (automatonState*(_infSets.get().size()+1))+ infSet); } // Set "don't care" states for (uint_fast64_t memoryState = 0; memoryState < this->_dontCareStates.get().size(); ++memoryState) { for (auto state : this->_dontCareStates.get()[memoryState]) { scheduler.setDontCare(state, memoryState); } } // Sanity check for created scheduler. STORM_LOG_ASSERT(scheduler.isDeterministicScheduler(), "Expected a deterministic scheduler"); STORM_LOG_ASSERT(!scheduler.isPartialScheduler(), "Expected a fully defined scheduler"); return scheduler; } template<typename ValueType, bool Nondeterministic> std::map<std::string, storm::storage::BitVector> SparseLTLHelper<ValueType, Nondeterministic>::computeApSets(std::map<std::string, std::shared_ptr<storm::logic::Formula const>> const& extracted, std::function<std::unique_ptr<CheckResult>(std::shared_ptr<storm::logic::Formula const> const& formula)> formulaChecker){ std::map<std::string, storm::storage::BitVector> apSets; for (auto& p: extracted) { STORM_LOG_INFO(" Computing satisfaction set for atomic proposition \"" << p.first << "\" <=> " << *p.second << "..."); std::unique_ptr<CheckResult> subResultPointer = formulaChecker(p.second); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); auto sat = subResult.getTruthValuesVector(); apSets[p.first] = std::move(sat); STORM_LOG_INFO(" Atomic proposition \"" << p.first << "\" is satisfied by " << apSets[p.first].getNumberOfSetBits() << " states."); } return apSets; } template <typename ValueType, bool Nondeterministic> storm::storage::BitVector SparseLTLHelper<ValueType, Nondeterministic>::computeAcceptingECs(automata::AcceptanceCondition const& acceptance, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, typename transformer::DAProduct<productModelType>::ptr product) { STORM_LOG_INFO("Computing accepting states for acceptance condition " << *acceptance.getAcceptanceExpression()); if (acceptance.getAcceptanceExpression()->isTRUE()) { STORM_LOG_INFO(" TRUE -> all states accepting (assumes no deadlock in the model)"); return storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true); } else if (acceptance.getAcceptanceExpression()->isFALSE()) { STORM_LOG_INFO(" FALSE -> all states rejecting"); return storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false); } std::vector<std::vector<automata::AcceptanceCondition::acceptance_expr::ptr>> dnf = acceptance.extractFromDNF(); storm::storage::BitVector acceptingStates(transitionMatrix.getRowGroupCount(), false); std::size_t accMECs = 0; std::size_t allMECs = 0; std::size_t i = 0; if (this->isProduceSchedulerSet()) { _infSets.emplace(); _accInfSets.emplace(product->getProductModel().getNumberOfStates(), boost::none); _producedChoices.emplace(); } for (auto const& conjunction : dnf) { // Determine the set of states of the subMDP that can satisfy the condition, remove all states that would violate Fins in the conjunction. storm::storage::BitVector allowed(transitionMatrix.getRowGroupCount(), true); STORM_LOG_INFO("Handle conjunction " << i); for (auto const& literal : conjunction) { STORM_LOG_INFO(" " << *literal); if (literal->isTRUE()) { // skip } else if (literal->isFALSE()) { allowed.clear(); break; } else if (literal->isAtom()) { const cpphoafparser::AtomAcceptance& atom = literal->getAtom(); if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) { // only deal with FIN, ignore INF here const storm::storage::BitVector& accSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet()); if (atom.isNegated()) { // allowed = allowed \ ~accSet = allowed & accSet allowed &= accSet; } else { // allowed = allowed \ accSet = allowed & ~accSet allowed &= ~accSet; } } } } if (allowed.empty()) { // skip continue; } STORM_LOG_DEBUG(" Allowed states: " << allowed); // Compute MECs in the allowed fragment storm::storage::MaximalEndComponentDecomposition<ValueType> mecs(transitionMatrix, backwardTransitions, allowed); allMECs += mecs.size(); for (const auto& mec : mecs) { STORM_LOG_DEBUG("Inspect MEC: " << mec); bool accepting = true; for (auto const& literal : conjunction) { if (literal->isTRUE()) { // skip } else if (literal->isFALSE()) { accepting = false; break; } else if (literal->isAtom()) { const cpphoafparser::AtomAcceptance& atom = literal->getAtom(); const storm::storage::BitVector& accSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet()); if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) { if (atom.isNegated()) { STORM_LOG_DEBUG("Checking against " << ~accSet); if (!mec.containsAnyState(~accSet)) { STORM_LOG_DEBUG(" -> not satisfied"); accepting = false; break; } } else { STORM_LOG_DEBUG("Checking against " << accSet); if (!mec.containsAnyState(accSet)) { STORM_LOG_DEBUG(" -> not satisfied"); accepting = false; break; } } } else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) { // do only sanity checks here STORM_LOG_ASSERT(atom.isNegated() ? !mec.containsAnyState(~accSet) : !mec.containsAnyState(accSet), "MEC contains Fin-states, which should have been removed"); } } } if (accepting) { accMECs++; STORM_LOG_DEBUG("MEC is accepting"); for (auto const &stateChoicePair : mec) { acceptingStates.set(stateChoicePair.first); } if (this->isProduceSchedulerSet()) { // Save all states contained in this MEC storm::storage::BitVector mecStates(transitionMatrix.getRowGroupCount(), false); for (auto const &stateChoicePair : mec) { mecStates.set(stateChoicePair.first); } // We know the MEC satisfied the conjunction: Save InfSets std::set<uint_fast64_t> infSetIds; for (auto const& literal : conjunction) { storm::storage::BitVector infSet; if (literal->isTRUE()) { // All states infSet = storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true); } else if (literal->isAtom()) { const cpphoafparser::AtomAcceptance &atom = literal->getAtom(); if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) { if (atom.isNegated()) { infSet = ~acceptance.getAcceptanceSet(atom.getAcceptanceSet()); } else { infSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet()); } } else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) { // If there are FinSets in the conjunction we use the InfSet containing all states in this MEC infSet = mecStates; } } // Save new InfSets if (infSet.size() > 0) { auto it = std::find(_infSets.get().begin(), _infSets.get().end(), infSet); if (it == _infSets.get().end()) { infSetIds.insert(_infSets.get().size()); _infSets.get().emplace_back(infSet); } else { // save ID for accCond of the MEC states infSetIds.insert(distance(_infSets.get().begin(), it)); } } } // Save the InfSets into the _accInfSets for states in this MEC, but only if there weren't assigned to any other MEC yet. storm::storage::BitVector newMecStates(transitionMatrix.getRowGroupCount(), false); for (auto const &stateChoicePair : mec) { if (_accInfSets.get()[stateChoicePair.first] == boost::none) { // state wasn't assigned to any other MEC yet. _accInfSets.get()[stateChoicePair.first].emplace(infSetIds); newMecStates.set(stateChoicePair.first); } } // Define scheduler choices for the states in this MEC (that are not in any other MEC) for (uint_fast64_t id : infSetIds) { // Scheduler that satisfies the MEC acceptance condition (visit each InfSet inf often, or switch to scheduler of another MEC) storm::storage::Scheduler<ValueType> mecScheduler(transitionMatrix.getRowGroupCount()); // States not in InfSet: Compute a scheduler that, with prob=1, reaches the infSet via mecStates starting from states that are not yet in other MEC storm::utility::graph::computeSchedulerProb1E<ValueType>(newMecStates, transitionMatrix, backwardTransitions, mecStates, _infSets.get()[id] & mecStates, mecScheduler); // States that already reached the InfSet for (auto pState : (newMecStates & _infSets.get()[id])) { // Prob1E sets an arbitrary choice for the psi states, but we want to stay in this accepting MEC. mecScheduler.setChoice(*mec.getChoicesForState(pState).begin() - transitionMatrix.getRowGroupIndices()[pState], pState); } // Extract scheduler choices (only for states that are already assigned a scheduler, i.e are in another MEC) for (auto pState : newMecStates) { // We want to reach the InfSet, save choice: <s, q, InfSetID> ---> choice this->_producedChoices.get().insert({std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), id), mecScheduler.getChoice(pState)}); } } } } } } STORM_LOG_DEBUG("Accepting states: " << acceptingStates); STORM_LOG_INFO("Found " << acceptingStates.getNumberOfSetBits() << " states in " << accMECs << " accepting MECs (considered " << allMECs << " MECs)."); return acceptingStates; } template <typename ValueType, bool Nondeterministic> storm::storage::BitVector SparseLTLHelper<ValueType, Nondeterministic>::computeAcceptingBCCs(automata::AcceptanceCondition const& acceptance, storm::storage::SparseMatrix<ValueType> const& transitionMatrix) { storm::storage::StronglyConnectedComponentDecomposition<ValueType> bottomSccs(transitionMatrix, storage::StronglyConnectedComponentDecompositionOptions().onlyBottomSccs().dropNaiveSccs()); storm::storage::BitVector acceptingStates(transitionMatrix.getRowGroupCount(), false); std::size_t checkedBSCCs = 0, acceptingBSCCs = 0, acceptingBSCCStates = 0; for (auto& scc : bottomSccs) { checkedBSCCs++; if (acceptance.isAccepting(scc)) { acceptingBSCCs++; for (auto& state : scc) { acceptingStates.set(state); acceptingBSCCStates++; } } } STORM_LOG_INFO("BSCC analysis: " << acceptingBSCCs << " of " << checkedBSCCs << " BSCCs were acceptingStates (" << acceptingBSCCStates << " states in acceptingStates BSCCs)."); return acceptingStates; } template <typename ValueType, bool Nondeterministic> void SparseLTLHelper<ValueType, Nondeterministic>::prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest) { STORM_LOG_ASSERT(this->_producedChoices.is_initialized(), "Trying to extract the produced scheduler but none is available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_infSets.is_initialized(), "Was there a computation call before?"); STORM_LOG_ASSERT(this->_accInfSets.is_initialized(), "Was there a computation call before?"); // Compute size of the resulting memory structure: A state <q, infSet> is encoded as (q* (|infSets|+1))+ |infSet| uint64 numMemoryStates = (numDaStates) * (_infSets.get().size()+1); //+1 for states outside accECs _dontCareStates.emplace(numMemoryStates, storm::storage::BitVector(this->_transitionMatrix.getRowGroupCount(), false)); // Set choices for states or consider them "dontCare" for (storm::storage::sparse::state_type automatonState= 0; automatonState < numDaStates; ++automatonState) { for (storm::storage::sparse::state_type modelState = 0; modelState < this->_transitionMatrix.getRowGroupCount(); ++modelState) { if (!product->isValidProductState(modelState, automatonState)) { // If the state <s,q> does not occur in the product model, all the infSet combinations are irrelevant for the scheduler. for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) { _dontCareStates.get()[automatonState * (_infSets.get().size() + 1) + infSet].set(modelState, true); } } else { auto pState = product->getProductStateIndex(modelState, automatonState); if (acceptingProductStates.get(pState)) { // For states in accepting ECs set the missing MEC-scheduler combinations are "dontCare", they are not reachable using the scheduler choices. //TODO is this correct? for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) { if (_producedChoices.get().find(std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), infSet)) == _producedChoices.get().end() ) { _dontCareStates.get()[(product->getAutomatonState(pState)) * (_infSets.get().size()+1) + infSet].set(product->getModelState(pState), true); } } } else { // Extract the choices of the REACH-scheduler (choices to reach an acc. MEC) for the MDP-DA product: <s,q> -> choice. The memory structure corresponds to the "last" copy of the DA (_infSets.get().size()). this->_accInfSets.get()[pState] = {_infSets.get().size()}; if (reachScheduler->isDontCare(pState)) { // Mark the maybe States of the untilProbability scheduler as "dontCare" _dontCareStates.get()[(product->getAutomatonState(pState)) * (_infSets.get().size()+1) + _infSets.get().size()].set(product->getModelState(pState), true); } else { // Set choice For non-accepting states that are not in any accepting EC this->_producedChoices.get().insert({std::make_tuple(product->getModelState(pState),product->getAutomatonState(pState),_infSets.get().size()),reachScheduler->getChoice(pState)}); }; // All other InfSet combinations are unreachable (dontCare) for (uint_fast64_t infSet = 0; infSet < _infSets.get().size(); ++infSet) { _dontCareStates.get()[(product->getAutomatonState(pState)) * (_infSets.get().size()+1) + infSet].set(product->getModelState(pState), true); } } } } } // Prepare the memory structure. For that, we need: transitions, initialMemoryStates (and memoryStateLabeling) // The next move function of the memory, will be build based on the transitions of the DA and jumps between InfSets. _memoryTransitions.emplace(numMemoryStates, std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(_transitionMatrix.getRowGroupCount(), false))); for (storm::storage::sparse::state_type automatonFrom = 0; automatonFrom < numDaStates; ++automatonFrom) { for (storm::storage::sparse::state_type modelState = 0; modelState < _transitionMatrix.getRowGroupCount(); ++modelState) { uint_fast64_t automatonTo = productBuilder.getSuccessor(automatonFrom, modelState); if (product->isValidProductState(modelState, automatonTo)) { // Add the modelState to one outgoing transition of all states of the form <automatonFrom, InfSet> (Inf=lenInfSet equals not in MEC) // For non-accepting states that are not in any accepting EC we use the 'last' copy of the DA // and for the accepting states we jump through copies of the DA wrt. the infinity sets. for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) { // Check if we need to switch the acceptance condition STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined."); if (_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().count(infSet) == 0) { // the state is is in a different accepting MEC with a different accepting conjunction of InfSets. auto newInfSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin(); _memoryTransitions.get()[(automatonFrom * (_infSets.get().size()+1)) + infSet][(automatonTo * (_infSets.get().size()+1)) + *newInfSet].set(modelState); } else { // Continue looking for any accepting EC (if we haven't reached one yet) or stay in the corresponding accepting EC, test whether we have reached the next infSet. if (infSet == _infSets.get().size() || !(_infSets.get()[infSet].get(product->getProductStateIndex(modelState, automatonTo)))) { // <modelState, automatonTo> is not in any accepting EC or does not satisfy the InfSet, we stay there. // Add modelState to the transition from <automatonFrom, InfSet> to <automatonTo, InfSet> _memoryTransitions.get()[(automatonFrom * (_infSets.get().size()+1)) + infSet][(automatonTo * (_infSets.get().size()+1)) + infSet].set(modelState); } else { STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined."); // <modelState, automatonTo> satisfies the InfSet, find the next one. auto nextInfSet = std::find(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin(), _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end(), infSet); STORM_LOG_ASSERT(nextInfSet != _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end(), "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> does not contain the infSet " << infSet); nextInfSet++; if (nextInfSet == _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end()) { // Start again. nextInfSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin(); } // Add modelState to the transition from <automatonFrom <mec, InfSet>> to <automatonTo, <mec, NextInfSet>>. _memoryTransitions.get()[(automatonFrom * (_infSets.get().size()+1)) + infSet][(automatonTo * (_infSets.get().size()+1)) + *nextInfSet].set(modelState); } } } } } } // Finished creation of transitions. // Find initial memory states this->_memoryInitialStates.emplace(); this->_memoryInitialStates->resize(this->_transitionMatrix.getRowGroupCount()); // Save for each relevant model state its initial memory state (get the s-successor q of q0) for (storm::storage::sparse::state_type modelState : modelStatesOfInterest) { storm::storage::sparse::state_type automatonState = productBuilder.getInitialState(modelState); STORM_LOG_ASSERT(product->isValidProductState(modelState, automatonState), "The memory successor state for the model state "<< modelState << "does not exist in the DA-Model Product."); if (acceptingProductStates[product->getProductStateIndex(modelState, automatonState)]) { STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonState)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonState<<"> is undefined."); // If <s, q> is an accepting state start in the first InfSet of <s, q>. auto infSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonState)].get().begin(); _memoryInitialStates.get()[modelState] = (automatonState * (_infSets.get().size()+1)) + *infSet; } else { _memoryInitialStates.get()[modelState] = (automatonState * (_infSets.get().size()+1)) + _infSets.get().size(); } } // Finished creation of initial states. } template<typename ValueType, bool Nondeterministic> std::vector<ValueType> SparseLTLHelper<ValueType, Nondeterministic>::computeDAProductProbabilities(Environment const& env, storm::automata::DeterministicAutomaton const& da, std::map<std::string, storm::storage::BitVector>& apSatSets) { const storm::automata::APSet& apSet = da.getAPSet(); std::vector<storm::storage::BitVector> statesForAP; for (const std::string& ap : apSet.getAPs()) { auto it = apSatSets.find(ap); STORM_LOG_THROW(it != apSatSets.end(), storm::exceptions::InvalidOperationException, "Deterministic automaton has AP " << ap << ", does not appear in formula"); statesForAP.push_back(std::move(it->second)); } storm::storage::BitVector statesOfInterest; if (this->hasRelevantStates()) { statesOfInterest = this->getRelevantStates(); } else { // Product from all model states statesOfInterest = storm::storage::BitVector(this->_transitionMatrix.getRowGroupCount(), true); } STORM_LOG_INFO("Building "+ (Nondeterministic ? std::string("MDP-DA") : std::string("DTMC-DA")) +" product with deterministic automaton, starting from " << statesOfInterest.getNumberOfSetBits() << " model states..."); transformer::DAProductBuilder productBuilder(da, statesForAP); auto product = productBuilder.build<productModelType>(this->_transitionMatrix, statesOfInterest); STORM_LOG_INFO("Product "+ (Nondeterministic ? std::string("MDP-DA") : std::string("DTMC-DA")) +" has " << product->getProductModel().getNumberOfStates() << " states and " << product->getProductModel().getNumberOfTransitions() << " transitions."); if (storm::settings::getModule<storm::settings::modules::DebugSettings>().isTraceSet()) { STORM_LOG_TRACE("Writing product model to product.dot"); std::ofstream productDot("product.dot"); product->getProductModel().writeDotToStream(productDot); productDot.close(); STORM_LOG_TRACE("Product model mapping:"); std::stringstream str; product->printMapping(str); STORM_LOG_TRACE(str.str()); } // Compute accepting states storm::storage::BitVector acceptingStates; if (Nondeterministic) { STORM_LOG_INFO("Computing MECs and checking for acceptance..."); acceptingStates = computeAcceptingECs(*product->getAcceptance(), product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), product); //TODO product is only needed for ->getModelState(pState) (remove arg) } else { STORM_LOG_INFO("Computing BSCCs and checking for acceptance..."); acceptingStates = computeAcceptingBCCs(*product->getAcceptance(), product->getProductModel().getTransitionMatrix()); } if (acceptingStates.empty()) { STORM_LOG_INFO("No accepting states, skipping probability computation."); std::vector<ValueType> numericResult(this->_transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>()); this->_randomScheduler = true; return numericResult; } STORM_LOG_INFO("Computing probabilities for reaching accepting components..."); storm::storage::BitVector bvTrue(product->getProductModel().getNumberOfStates(), true); storm::storage::BitVector soiProduct(product->getStatesOfInterest()); // Create goal for computeUntilProbabilities, always compute maximizing probabilities storm::solver::SolveGoal<ValueType> solveGoalProduct; if (this->isValueThresholdSet()) { solveGoalProduct = storm::solver::SolveGoal<ValueType>(OptimizationDirection::Maximize, this->getValueThresholdComparisonType(), this->getValueThresholdValue(), std::move(soiProduct)); } else { solveGoalProduct = storm::solver::SolveGoal<ValueType>(OptimizationDirection::Maximize); solveGoalProduct.setRelevantValues(std::move(soiProduct)); } std::vector<ValueType> prodNumericResult; if (Nondeterministic) { MDPSparseModelCheckingHelperReturnType<ValueType> prodCheckResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(env, std::move(solveGoalProduct), product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), bvTrue, acceptingStates, this->isQualitativeSet(), this->isProduceSchedulerSet() // Whether to create memoryless scheduler for the Model-DA Product. ); prodNumericResult = std::move(prodCheckResult.values); if (this->isProduceSchedulerSet()) { prepareScheduler(da.getNumberOfStates(), acceptingStates, std::move(prodCheckResult.scheduler), productBuilder, product, statesOfInterest); } } else { prodNumericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeUntilProbabilities(env, std::move(solveGoalProduct), product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), bvTrue, acceptingStates, this->isQualitativeSet()); } std::vector<ValueType> numericResult = product->projectToOriginalModel(this->_transitionMatrix.getRowGroupCount(), prodNumericResult); return numericResult; } template<typename ValueType, bool Nondeterministic> std::vector <ValueType> SparseLTLHelper<ValueType, Nondeterministic>::computeLTLProbabilities(Environment const& env, storm::logic::Formula const& formula, std::map<std::string, storm::storage::BitVector>& apSatSets) { std::shared_ptr<storm::logic::Formula const> ltlFormula; STORM_LOG_THROW((!Nondeterministic) || this->isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); if (Nondeterministic && this->getOptimizationDirection() == OptimizationDirection::Minimize) { // negate formula in order to compute 1-Pmax[!formula] ltlFormula = std::make_shared<storm::logic::UnaryBooleanPathFormula>(storm::logic::UnaryBooleanOperatorType::Not, formula.asSharedPointer()); STORM_LOG_INFO("Computing Pmin, proceeding with negated LTL formula."); } else { ltlFormula = formula.asSharedPointer(); } STORM_LOG_INFO("Resulting LTL path formula: " << ltlFormula->toString()); STORM_LOG_INFO(" in prefix format: " << ltlFormula->toPrefixString()); // Convert LTL formula to a deterministic automaton std::shared_ptr<storm::automata::DeterministicAutomaton> da; if (env.modelchecker().isLtl2daSet()) { // Use the external tool given via ltl2da std::string ltl2da = env.modelchecker().getLtl2da().get(); da = storm::automata::LTL2DeterministicAutomaton::ltl2daExternalTool(*ltlFormula, ltl2da); } else { // Use the internal tool (Spot) // For nondeterministic models the acceptance condition is transformed into DNF da = storm::automata::LTL2DeterministicAutomaton::ltl2daSpot(*ltlFormula, Nondeterministic); } STORM_LOG_INFO("Deterministic automaton for LTL formula has " << da->getNumberOfStates() << " states, " << da->getAPSet().size() << " atomic propositions and " << *da->getAcceptance()->getAcceptanceExpression() << " as acceptance condition." << std::endl); std::vector<ValueType> numericResult = computeDAProductProbabilities(env, *da, apSatSets); if(Nondeterministic && this->getOptimizationDirection()==OptimizationDirection::Minimize) { // compute 1-Pmax[!fomula] for (auto& value : numericResult) { value = storm::utility::one<ValueType>() - value; } } return numericResult; } template class SparseLTLHelper<double, false>; template class SparseLTLHelper<double, true>; #ifdef STORM_HAVE_CARL template class SparseLTLHelper<storm::RationalNumber, false>; template class SparseLTLHelper<storm::RationalNumber, true>; template class SparseLTLHelper<storm::RationalFunction, false>; #endif } } }