|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef STORMEIGEN_SPARSE_COMPRESSED_BASE_H
#define STORMEIGEN_SPARSE_COMPRESSED_BASE_H
namespace StormEigen {
template<typename Derived> class SparseCompressedBase; namespace internal {
template<typename Derived> struct traits<SparseCompressedBase<Derived> > : traits<Derived> {};
} // end namespace internal
template<typename Derived> class SparseCompressedBase : public SparseMatrixBase<Derived> { public: typedef SparseMatrixBase<Derived> Base; STORMEIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase) using Base::operator=; using Base::IsRowMajor; class InnerIterator; class ReverseInnerIterator; protected: typedef typename Base::IndexVector IndexVector; StormEigen::Map<IndexVector> innerNonZeros() { return StormEigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } const StormEigen::Map<const IndexVector> innerNonZeros() const { return StormEigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } public: /** \returns the number of non zero coefficients */ inline Index nonZeros() const { if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0) return derived().nonZeros(); else if(isCompressed()) return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0]; else if(derived().outerSize()==0) return 0; else return innerNonZeros().sum(); } /** \returns a const pointer to the array of values.
* This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline const Scalar* valuePtr() const { return derived().valuePtr(); } /** \returns a non-const pointer to the array of values.
* This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline Scalar* valuePtr() { return derived().valuePtr(); }
/** \returns a const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); } /** \returns a non-const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
/** \returns a const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 for SparseVector * \sa valuePtr(), innerIndexPtr() */ inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); } /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 for SparseVector * \sa valuePtr(), innerIndexPtr() */ inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); } /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); } /** \returns whether \c *this is in compressed form. */ inline bool isCompressed() const { return innerNonZeroPtr()==0; }
protected: /** Default constructor. Do nothing. */ SparseCompressedBase() {} private: template<typename OtherDerived> explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&); };
template<typename Derived> class SparseCompressedBase<Derived>::InnerIterator { public: InnerIterator(const SparseCompressedBase& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) { if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) { m_id = 0; m_end = mat.nonZeros(); } else { m_id = mat.outerIndexPtr()[outer]; if(mat.isCompressed()) m_end = mat.outerIndexPtr()[outer+1]; else m_end = m_id + mat.innerNonZeroPtr()[outer]; } }
explicit InnerIterator(const SparseCompressedBase& mat) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros()) { STORMEIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); }
explicit InnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data) : m_values(&data.value(0)), m_indices(&data.index(0)), m_outer(0), m_id(0), m_end(data.size()) { STORMEIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); }
inline InnerIterator& operator++() { m_id++; return *this; }
inline const Scalar& value() const { return m_values[m_id]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
inline StorageIndex index() const { return m_indices[m_id]; } inline Index outer() const { return m_outer.value(); } inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id < m_end); }
protected: const Scalar* m_values; const StorageIndex* m_indices; const internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> m_outer; Index m_id; Index m_end; private: // If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template<typename T> InnerIterator(const SparseMatrixBase<T>&, Index outer); };
template<typename Derived> class SparseCompressedBase<Derived>::ReverseInnerIterator { public: ReverseInnerIterator(const SparseCompressedBase& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) { if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) { m_start = 0; m_id = mat.nonZeros(); } else { m_start.value() = mat.outerIndexPtr()[outer]; if(mat.isCompressed()) m_id = mat.outerIndexPtr()[outer+1]; else m_id = m_start.value() + mat.innerNonZeroPtr()[outer]; } }
explicit ReverseInnerIterator(const SparseCompressedBase& mat) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros()) { STORMEIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); }
explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data) : m_values(&data.value(0)), m_indices(&data.index(0)), m_outer(0), m_start(0), m_id(data.size()) { STORMEIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); }
inline ReverseInnerIterator& operator--() { --m_id; return *this; }
inline const Scalar& value() const { return m_values[m_id-1]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
inline StorageIndex index() const { return m_indices[m_id-1]; } inline Index outer() const { return m_outer.value(); } inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id > m_start.value()); }
protected: const Scalar* m_values; const StorageIndex* m_indices; const internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> m_outer; Index m_id; const internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> m_start; };
namespace internal {
template<typename Derived> struct evaluator<SparseCompressedBase<Derived> > : evaluator_base<Derived> { typedef typename Derived::Scalar Scalar; typedef typename Derived::InnerIterator InnerIterator; typedef typename Derived::ReverseInnerIterator ReverseInnerIterator; enum { CoeffReadCost = NumTraits<Scalar>::ReadCost, Flags = Derived::Flags }; evaluator() : m_matrix(0) { STORMEIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } explicit evaluator(const Derived &mat) : m_matrix(&mat) { STORMEIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } inline Index nonZerosEstimate() const { return m_matrix->nonZeros(); } operator Derived&() { return m_matrix->const_cast_derived(); } operator const Derived&() const { return *m_matrix; } typedef typename DenseCoeffsBase<Derived,ReadOnlyAccessors>::CoeffReturnType CoeffReturnType; Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); } Scalar& coeffRef(Index row, Index col) { eigen_internal_assert(row>=0 && row<m_matrix->rows() && col>=0 && col<m_matrix->cols()); const Index outer = Derived::IsRowMajor ? row : col; const Index inner = Derived::IsRowMajor ? col : row;
Index start = m_matrix->outerIndexPtr()[outer]; Index end = m_matrix->isCompressed() ? m_matrix->outerIndexPtr()[outer+1] : m_matrix->outerIndexPtr()[outer] + m_matrix->innerNonZeroPtr()[outer]; eigen_assert(end>start && "you are using a non finalized sparse matrix or written coefficient does not exist"); const Index p = std::lower_bound(m_matrix->innerIndexPtr()+start, m_matrix->innerIndexPtr()+end,inner) - m_matrix->innerIndexPtr(); eigen_assert((p<end) && (m_matrix->innerIndexPtr()[p]==inner) && "written coefficient does not exist"); return m_matrix->const_cast_derived().valuePtr()[p]; }
const Derived *m_matrix; };
}
} // end namespace StormEigen
#endif // STORMEIGEN_SPARSE_COMPRESSED_BASE_H
|