#include "storm/storage/dd/cudd/InternalCuddBdd.h" #include #include "storm/storage/dd/cudd/InternalCuddDdManager.h" #include "storm/storage/dd/Odd.h" #include "storm/storage/BitVector.h" #include "storm/storage/PairHash.h" #include "storm/utility/macros.h" namespace storm { namespace dd { InternalBdd::InternalBdd(InternalDdManager const* ddManager, cudd::BDD cuddBdd) : ddManager(ddManager), cuddBdd(cuddBdd) { // Intentionally left empty. } InternalBdd InternalBdd::fromVector(InternalDdManager const* ddManager, Odd const& odd, std::vector const& sortedDdVariableIndices, std::function const& filter) { uint_fast64_t offset = 0; return InternalBdd(ddManager, cudd::BDD(ddManager->getCuddManager(), fromVectorRec(ddManager->getCuddManager().getManager(), offset, 0, sortedDdVariableIndices.size(), odd, sortedDdVariableIndices, filter))); } bool InternalBdd::operator==(InternalBdd const& other) const { return this->getCuddBdd() == other.getCuddBdd(); } bool InternalBdd::operator!=(InternalBdd const& other) const { return !(*this == other); } InternalBdd InternalBdd::relationalProduct(InternalBdd const& relation, std::vector> const& rowVariables, std::vector> const& columnVariables) const { InternalBdd cube = ddManager->getBddOne(); for (auto const& variable : rowVariables) { cube &= variable; } InternalBdd result = this->andExists(relation, cube); result = result.swapVariables(rowVariables, columnVariables); return result; } InternalBdd InternalBdd::inverseRelationalProduct(InternalBdd const& relation, std::vector> const& rowVariables, std::vector> const& columnVariables) const { InternalBdd cube = ddManager->getBddOne(); for (auto const& variable : columnVariables) { cube &= variable; } InternalBdd result = this->swapVariables(rowVariables, columnVariables).andExists(relation, cube); return result; } InternalBdd InternalBdd::inverseRelationalProductWithExtendedRelation(InternalBdd const& relation, std::vector> const& rowVariables, std::vector> const& columnVariables) const { return this->inverseRelationalProduct(relation, rowVariables, columnVariables); } InternalBdd InternalBdd::ite(InternalBdd const& thenDd, InternalBdd const& elseDd) const { return InternalBdd(ddManager, this->getCuddBdd().Ite(thenDd.getCuddBdd(), elseDd.getCuddBdd())); } template InternalAdd InternalBdd::ite(InternalAdd const& thenAdd, InternalAdd const& elseAdd) const { return InternalAdd(ddManager, this->getCuddBdd().Add().Ite(thenAdd.getCuddAdd(), elseAdd.getCuddAdd())); } InternalBdd InternalBdd::operator||(InternalBdd const& other) const { InternalBdd result(*this); result |= other; return result; } InternalBdd& InternalBdd::operator|=(InternalBdd const& other) { this->cuddBdd = this->getCuddBdd() | other.getCuddBdd(); return *this; } InternalBdd InternalBdd::operator&&(InternalBdd const& other) const { InternalBdd result(*this); result &= other; return result; } InternalBdd& InternalBdd::operator&=(InternalBdd const& other) { this->cuddBdd = this->getCuddBdd() & other.getCuddBdd(); return *this; } InternalBdd InternalBdd::iff(InternalBdd const& other) const { return InternalBdd(ddManager, this->getCuddBdd().Xnor(other.getCuddBdd())); } InternalBdd InternalBdd::exclusiveOr(InternalBdd const& other) const { return InternalBdd(ddManager, this->getCuddBdd().Xor(other.getCuddBdd())); } InternalBdd InternalBdd::implies(InternalBdd const& other) const { return InternalBdd(ddManager, this->getCuddBdd().Ite(other.getCuddBdd(), ddManager->getBddOne().getCuddBdd())); } InternalBdd InternalBdd::operator!() const { InternalBdd result(*this); result.complement(); return result; } InternalBdd& InternalBdd::complement() { this->cuddBdd = ~this->getCuddBdd(); return *this; } InternalBdd InternalBdd::existsAbstract(InternalBdd const& cube) const { return InternalBdd(ddManager, this->getCuddBdd().ExistAbstract(cube.getCuddBdd())); } InternalBdd InternalBdd::existsAbstractRepresentative(InternalBdd const& cube) const { return InternalBdd(ddManager, this->getCuddBdd().ExistAbstractRepresentative(cube.getCuddBdd())); } InternalBdd InternalBdd::universalAbstract(InternalBdd const& cube) const { return InternalBdd(ddManager, this->getCuddBdd().UnivAbstract(cube.getCuddBdd())); } InternalBdd InternalBdd::andExists(InternalBdd const& other, InternalBdd const& cube) const { return InternalBdd(ddManager, this->getCuddBdd().AndAbstract(other.getCuddBdd(), cube.getCuddBdd())); } InternalBdd InternalBdd::constrain(InternalBdd const& constraint) const { return InternalBdd(ddManager, this->getCuddBdd().Constrain(constraint.getCuddBdd())); } InternalBdd InternalBdd::restrict(InternalBdd const& constraint) const { return InternalBdd(ddManager, this->getCuddBdd().Restrict(constraint.getCuddBdd())); } InternalBdd InternalBdd::swapVariables(std::vector> const& from, std::vector> const& to) const { std::vector fromBdd; std::vector toBdd; for (auto it1 = from.begin(), ite1 = from.end(), it2 = to.begin(); it1 != ite1; ++it1, ++it2) { fromBdd.push_back(it1->getCuddBdd()); toBdd.push_back(it2->getCuddBdd()); } return InternalBdd(ddManager, this->getCuddBdd().SwapVariables(fromBdd, toBdd)); } InternalBdd InternalBdd::getSupport() const { return InternalBdd(ddManager, this->getCuddBdd().Support()); } uint_fast64_t InternalBdd::getNonZeroCount(uint_fast64_t numberOfDdVariables) const { // If the number of DD variables is zero, CUDD returns a number greater 0 for constant nodes different from // zero, which is not the behaviour we expect. if (numberOfDdVariables == 0) { return 0; } return static_cast(this->getCuddBdd().CountMinterm(static_cast(numberOfDdVariables))); } uint_fast64_t InternalBdd::getLeafCount() const { return static_cast(this->getCuddBdd().CountLeaves()); } uint_fast64_t InternalBdd::getNodeCount() const { return static_cast(this->getCuddBdd().nodeCount()); } bool InternalBdd::isOne() const { return this->getCuddBdd().IsOne(); } bool InternalBdd::isZero() const { return this->getCuddBdd().IsZero(); } uint_fast64_t InternalBdd::getIndex() const { return static_cast(this->getCuddBdd().NodeReadIndex()); } uint_fast64_t InternalBdd::getLevel() const { return static_cast(ddManager->getCuddManager().ReadPerm(this->getIndex())); } void InternalBdd::exportToDot(std::string const& filename, std::vector const& ddVariableNamesAsStrings, bool showVariablesIfPossible) const { // Build the name input of the DD. std::vector ddNames; std::string ddName("f"); ddNames.push_back(new char[ddName.size() + 1]); std::copy(ddName.c_str(), ddName.c_str() + 2, ddNames.back()); // Now build the variables names. std::vector ddVariableNames; for (auto const& element : ddVariableNamesAsStrings) { ddVariableNames.push_back(new char[element.size() + 1]); std::copy(element.c_str(), element.c_str() + element.size() + 1, ddVariableNames.back()); } // Open the file, dump the DD and close it again. std::vector cuddBddVector = { this->getCuddBdd() }; FILE* filePointer = fopen(filename.c_str() , "w"); if (showVariablesIfPossible) { ddManager->getCuddManager().DumpDot(cuddBddVector, ddVariableNames.data(), &ddNames[0], filePointer); } else { ddManager->getCuddManager().DumpDot(cuddBddVector, nullptr, &ddNames[0], filePointer); } fclose(filePointer); // Finally, delete the names. for (char* element : ddNames) { delete element; } for (char* element : ddVariableNames) { delete element; } } cudd::BDD InternalBdd::getCuddBdd() const { return this->cuddBdd; } DdNode* InternalBdd::getCuddDdNode() const { return this->getCuddBdd().getNode(); } template InternalAdd InternalBdd::toAdd() const { return InternalAdd(ddManager, this->getCuddBdd().Add()); } DdNode* InternalBdd::fromVectorRec(::DdManager* manager, uint_fast64_t& currentOffset, uint_fast64_t currentLevel, uint_fast64_t maxLevel, Odd const& odd, std::vector const& ddVariableIndices, std::function const& filter) { if (currentLevel == maxLevel) { // If we are in a terminal node of the ODD, we need to check whether the then-offset of the ODD is one // (meaning the encoding is a valid one) or zero (meaning the encoding is not valid). Consequently, we // need to copy the next value of the vector iff the then-offset is greater than zero. if (odd.getThenOffset() > 0) { if (filter(currentOffset++)) { return Cudd_ReadOne(manager); } else { return Cudd_ReadLogicZero(manager); } } else { return Cudd_ReadZero(manager); } } else { // If the total offset is zero, we can just return the constant zero DD. if (odd.getThenOffset() + odd.getElseOffset() == 0) { return Cudd_ReadZero(manager); } // Determine the new else-successor. DdNode* elseSuccessor = nullptr; if (odd.getElseOffset() > 0) { elseSuccessor = fromVectorRec(manager, currentOffset, currentLevel + 1, maxLevel, odd.getElseSuccessor(), ddVariableIndices, filter); } else { elseSuccessor = Cudd_ReadLogicZero(manager); } Cudd_Ref(elseSuccessor); // Determine the new then-successor. DdNode* thenSuccessor = nullptr; if (odd.getThenOffset() > 0) { thenSuccessor = fromVectorRec(manager, currentOffset, currentLevel + 1, maxLevel, odd.getThenSuccessor(), ddVariableIndices, filter); } else { thenSuccessor = Cudd_ReadLogicZero(manager); } Cudd_Ref(thenSuccessor); // Create a node representing ITE(currentVar, thenSuccessor, elseSuccessor); DdNode* currentVar = Cudd_bddIthVar(manager, static_cast(ddVariableIndices[currentLevel])); Cudd_Ref(currentVar); DdNode* result = Cudd_bddIte(manager, currentVar, thenSuccessor, elseSuccessor); Cudd_Ref(result); // Dispose of the intermediate results Cudd_RecursiveDeref(manager, currentVar); Cudd_RecursiveDeref(manager, thenSuccessor); Cudd_RecursiveDeref(manager, elseSuccessor); // Before returning, we remove the protection imposed by the previous call to Cudd_Ref. Cudd_Deref(result); return result; } } storm::storage::BitVector InternalBdd::toVector(storm::dd::Odd const& rowOdd, std::vector const& ddVariableIndices) const { storm::storage::BitVector result(rowOdd.getTotalOffset()); this->toVectorRec(Cudd_Regular(this->getCuddDdNode()), ddManager->getCuddManager(), result, rowOdd, Cudd_IsComplement(this->getCuddDdNode()), 0, ddVariableIndices.size(), 0, ddVariableIndices); return result; } void InternalBdd::toVectorRec(DdNode const* dd, cudd::Cudd const& manager, storm::storage::BitVector& result, Odd const& rowOdd, bool complement, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector const& ddRowVariableIndices) const { // If there are no more values to select, we can directly return. if (dd == Cudd_ReadLogicZero(manager.getManager()) && !complement) { return; } else if (dd == Cudd_ReadOne(manager.getManager()) && complement) { return; } // If we are at the maximal level, the value to be set is stored as a constant in the DD. if (currentRowLevel == maxLevel) { result.set(currentRowOffset, true); } else if (ddRowVariableIndices[currentRowLevel] < Cudd_NodeReadIndex(dd)) { toVectorRec(dd, manager, result, rowOdd.getElseSuccessor(), complement, currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices); toVectorRec(dd, manager, result, rowOdd.getThenSuccessor(), complement, currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices); } else { // Otherwise, we compute the ODDs for both the then- and else successors. DdNode const* elseDdNode = Cudd_E_const(dd); DdNode const* thenDdNode = Cudd_T_const(dd); // Determine whether we have to evaluate the successors as if they were complemented. bool elseComplemented = Cudd_IsComplement(elseDdNode) ^ complement; bool thenComplemented = Cudd_IsComplement(thenDdNode) ^ complement; toVectorRec(Cudd_Regular(elseDdNode), manager, result, rowOdd.getElseSuccessor(), elseComplemented, currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices); toVectorRec(Cudd_Regular(thenDdNode), manager, result, rowOdd.getThenSuccessor(), thenComplemented, currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices); } } Odd InternalBdd::createOdd(std::vector const& ddVariableIndices) const { // Prepare a unique table for each level that keeps the constructed ODD nodes unique. std::vector>> uniqueTableForLevels(ddVariableIndices.size() + 1); // Now construct the ODD structure from the BDD. std::shared_ptr rootOdd = createOddRec(this->getCuddDdNode(), ddManager->getCuddManager(), 0, ddVariableIndices.size(), ddVariableIndices, uniqueTableForLevels); // Return a copy of the root node to remove the shared_ptr encapsulation. return Odd(*rootOdd); } std::size_t InternalBdd::HashFunctor::operator()(std::pair const& key) const { std::size_t result = 0; boost::hash_combine(result, key.first); boost::hash_combine(result, key.second); return result; } std::shared_ptr InternalBdd::createOddRec(DdNode const* dd, cudd::Cudd const& manager, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::vector const& ddVariableIndices, std::vector>>& uniqueTableForLevels) { // Check whether the ODD for this node has already been computed (for this level) and if so, return this instead. auto it = uniqueTableForLevels[currentLevel].find(dd); if (it != uniqueTableForLevels[currentLevel].end()) { return it->second; } else { // Otherwise, we need to recursively compute the ODD. // If we are already at the maximal level that is to be considered, we can simply create an Odd without // successors if (currentLevel == maxLevel) { auto oddNode = std::make_shared(nullptr, 0, nullptr, dd != Cudd_ReadLogicZero(manager.getManager()) ? 1 : 0); uniqueTableForLevels[currentLevel].emplace(dd, oddNode); return oddNode; } else if (ddVariableIndices[currentLevel] < Cudd_NodeReadIndex(dd)) { // If we skipped the level in the DD, we compute the ODD just for the else-successor and use the same // node for the then-successor as well. std::shared_ptr elseNode = createOddRec(dd, manager, currentLevel + 1, maxLevel, ddVariableIndices, uniqueTableForLevels); std::shared_ptr thenNode = elseNode; auto oddNode = std::make_shared(elseNode, elseNode->getTotalOffset(), thenNode, elseNode->getTotalOffset()); uniqueTableForLevels[currentLevel].emplace(dd, oddNode); return oddNode; } else { // Otherwise, we compute the ODDs for both the then- and else successors. DdNode const* thenDdNode = Cudd_T_const(dd); DdNode const* elseDdNode = Cudd_E_const(dd); if (Cudd_IsComplement(dd)) { thenDdNode = Cudd_Not(thenDdNode); elseDdNode = Cudd_Not(elseDdNode); } std::shared_ptr elseNode = createOddRec(elseDdNode, manager, currentLevel + 1, maxLevel, ddVariableIndices, uniqueTableForLevels); std::shared_ptr thenNode = createOddRec(thenDdNode, manager, currentLevel + 1, maxLevel, ddVariableIndices, uniqueTableForLevels); auto oddNode = std::make_shared(elseNode, elseNode->getTotalOffset(), thenNode, thenNode->getTotalOffset()); uniqueTableForLevels[currentLevel].emplace(dd, oddNode); return oddNode; } } } template void InternalBdd::filterExplicitVector(Odd const& odd, std::vector const& ddVariableIndices, std::vector const& sourceValues, std::vector& targetValues) const { uint_fast64_t currentIndex = 0; filterExplicitVectorRec(Cudd_Regular(this->getCuddDdNode()), ddManager->getCuddManager(), 0, Cudd_IsComplement(this->getCuddDdNode()), ddVariableIndices.size(), ddVariableIndices, 0, odd, targetValues, currentIndex, sourceValues); } template void InternalBdd::filterExplicitVectorRec(DdNode const* dd, cudd::Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd const& odd, std::vector& result, uint_fast64_t& currentIndex, std::vector const& values) { // If there are no more values to select, we can directly return. if (dd == Cudd_ReadLogicZero(manager.getManager()) && !complement) { return; } else if (dd == Cudd_ReadOne(manager.getManager()) && complement) { return; } if (currentLevel == maxLevel) { result[currentIndex++] = values[currentOffset]; } else if (ddVariableIndices[currentLevel] < Cudd_NodeReadIndex(dd)) { // If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set // and for the one in which it is not set. filterExplicitVectorRec(dd, manager, currentLevel + 1, complement, maxLevel, ddVariableIndices, currentOffset, odd.getElseSuccessor(), result, currentIndex, values); filterExplicitVectorRec(dd, manager, currentLevel + 1, complement, maxLevel, ddVariableIndices, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), result, currentIndex, values); } else { // Otherwise, we compute the ODDs for both the then- and else successors. DdNode const* thenDdNode = Cudd_T_const(dd); DdNode const* elseDdNode = Cudd_E_const(dd); // Determine whether we have to evaluate the successors as if they were complemented. bool elseComplemented = Cudd_IsComplement(elseDdNode) ^ complement; bool thenComplemented = Cudd_IsComplement(thenDdNode) ^ complement; filterExplicitVectorRec(Cudd_Regular(elseDdNode), manager, currentLevel + 1, elseComplemented, maxLevel, ddVariableIndices, currentOffset, odd.getElseSuccessor(), result, currentIndex, values); filterExplicitVectorRec(Cudd_Regular(thenDdNode), manager, currentLevel + 1, thenComplemented, maxLevel, ddVariableIndices, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), result, currentIndex, values); } } void InternalBdd::filterExplicitVector(Odd const& odd, std::vector const& ddVariableIndices, storm::storage::BitVector const& sourceValues, storm::storage::BitVector& targetValues) const { uint_fast64_t currentIndex = 0; filterExplicitVectorRec(Cudd_Regular(this->getCuddDdNode()), ddManager->getCuddManager(), 0, Cudd_IsComplement(this->getCuddDdNode()), ddVariableIndices.size(), ddVariableIndices, 0, odd, targetValues, currentIndex, sourceValues); } void InternalBdd::filterExplicitVectorRec(DdNode const* dd, cudd::Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd const& odd, storm::storage::BitVector& result, uint_fast64_t& currentIndex, storm::storage::BitVector const& values) { // If there are no more values to select, we can directly return. if (dd == Cudd_ReadLogicZero(manager.getManager()) && !complement) { return; } else if (dd == Cudd_ReadOne(manager.getManager()) && complement) { return; } if (currentLevel == maxLevel) { result.set(currentIndex++, values.get(currentOffset)); } else if (ddVariableIndices[currentLevel] < Cudd_NodeReadIndex(dd)) { // If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set // and for the one in which it is not set. filterExplicitVectorRec(dd, manager, currentLevel + 1, complement, maxLevel, ddVariableIndices, currentOffset, odd.getElseSuccessor(), result, currentIndex, values); filterExplicitVectorRec(dd, manager, currentLevel + 1, complement, maxLevel, ddVariableIndices, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), result, currentIndex, values); } else { // Otherwise, we compute the ODDs for both the then- and else successors. DdNode const* thenDdNode = Cudd_T_const(dd); DdNode const* elseDdNode = Cudd_E_const(dd); // Determine whether we have to evaluate the successors as if they were complemented. bool elseComplemented = Cudd_IsComplement(elseDdNode) ^ complement; bool thenComplemented = Cudd_IsComplement(thenDdNode) ^ complement; filterExplicitVectorRec(Cudd_Regular(elseDdNode), manager, currentLevel + 1, elseComplemented, maxLevel, ddVariableIndices, currentOffset, odd.getElseSuccessor(), result, currentIndex, values); filterExplicitVectorRec(Cudd_Regular(thenDdNode), manager, currentLevel + 1, thenComplemented, maxLevel, ddVariableIndices, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), result, currentIndex, values); } } std::pair, std::unordered_map> InternalBdd::toExpression(storm::expressions::ExpressionManager& manager) const { std::pair, std::unordered_map> result; // Create (and maintain) a mapping from the DD nodes to a counter that says the how-many-th node (within the // nodes of equal index) the node was. std::unordered_map nodeToCounterMap; std::vector nextCounterForIndex(ddManager->getNumberOfDdVariables(), 0); std::unordered_map, storm::expressions::Variable> countIndexToVariablePair; bool negated = Cudd_Regular(this->getCuddDdNode()) != this->getCuddDdNode(); // Translate from the top node downwards. storm::expressions::Variable topVariable = this->toExpressionRec(Cudd_Regular(this->getCuddDdNode()), ddManager->getCuddManager(), manager, result.first, result.second, countIndexToVariablePair, nodeToCounterMap, nextCounterForIndex); // Create the final expression. if (negated) { result.first.push_back(!topVariable); } else { result.first.push_back(topVariable); } return result; } storm::expressions::Variable InternalBdd::toExpressionRec(DdNode const* dd, cudd::Cudd const& ddManager, storm::expressions::ExpressionManager& manager, std::vector& expressions, std::unordered_map& indexToVariableMap, std::unordered_map, storm::expressions::Variable>& countIndexToVariablePair, std::unordered_map& nodeToCounterMap, std::vector& nextCounterForIndex) { STORM_LOG_ASSERT(dd == Cudd_Regular(dd), "Expected non-negated BDD node."); // First, try to look up the current node if it's not a terminal node. auto nodeCounterIt = nodeToCounterMap.find(dd); if (nodeCounterIt != nodeToCounterMap.end()) { // If we have found the node, this means we can look up the counter-index pair and get the corresponding variable. auto variableIt = countIndexToVariablePair.find(std::make_pair(nodeCounterIt->second, Cudd_NodeReadIndex(dd))); STORM_LOG_ASSERT(variableIt != countIndexToVariablePair.end(), "Unable to find node."); return variableIt->second; } // If the node was not yet encountered, we create a variable and associate it with the appropriate expression. storm::expressions::Variable newNodeVariable = manager.declareFreshBooleanVariable(); // Since we want to reuse the variable whenever possible, we insert the appropriate entries in the hash table. if (!Cudd_IsConstant_const(dd)) { // If we are dealing with a non-terminal node, we count it as a new node with this index. nodeToCounterMap[dd] = nextCounterForIndex[Cudd_NodeReadIndex(dd)]; countIndexToVariablePair[std::make_pair(nextCounterForIndex[Cudd_NodeReadIndex(dd)], Cudd_NodeReadIndex(dd))] = newNodeVariable; ++nextCounterForIndex[Cudd_NodeReadIndex(dd)]; } else { // If it's a terminal node, it is the one leaf and there's no need to keep track of a counter for this level. nodeToCounterMap[dd] = 0; countIndexToVariablePair[std::make_pair(0, Cudd_NodeReadIndex(dd))] = newNodeVariable; } // In the terminal case, we can only have a one since we are considering non-negated nodes only. if (dd == Cudd_ReadOne(ddManager.getManager())) { // Push the expression that enforces that the new variable is true. expressions.push_back(storm::expressions::iff(manager.boolean(true), newNodeVariable)); } else { // In the non-terminal case, we recursively translate the children nodes and then construct and appropriate ite-expression. DdNode const* t = Cudd_T_const(dd); DdNode const* e = Cudd_E_const(dd); DdNode const* T = Cudd_Regular(t); DdNode const* E = Cudd_Regular(e); storm::expressions::Variable thenVariable = toExpressionRec(T, ddManager, manager, expressions, indexToVariableMap, countIndexToVariablePair, nodeToCounterMap, nextCounterForIndex); storm::expressions::Variable elseVariable = toExpressionRec(E, ddManager, manager, expressions, indexToVariableMap, countIndexToVariablePair, nodeToCounterMap, nextCounterForIndex); // Create the appropriate expression. auto indexVariable = indexToVariableMap.find(Cudd_NodeReadIndex(dd)); storm::expressions::Variable levelVariable; if (indexVariable == indexToVariableMap.end()) { levelVariable = manager.declareFreshBooleanVariable(); indexToVariableMap[Cudd_NodeReadIndex(dd)] = levelVariable; } else { levelVariable = indexVariable->second; } expressions.push_back(storm::expressions::iff(newNodeVariable, storm::expressions::ite(levelVariable, t == T ? thenVariable : !thenVariable, e == E ? elseVariable : !elseVariable))); } // Return the variable for this node. return newNodeVariable; } template InternalAdd InternalBdd::toAdd() const; template InternalAdd InternalBdd::toAdd() const; #ifdef STORM_HAVE_CARL template InternalAdd InternalBdd::toAdd() const; #endif template void InternalBdd::filterExplicitVectorRec(DdNode const* dd, cudd::Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd const& odd, std::vector& result, uint_fast64_t& currentIndex, std::vector const& values); template void InternalBdd::filterExplicitVectorRec(DdNode const* dd, cudd::Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd const& odd, std::vector& result, uint_fast64_t& currentIndex, std::vector const& values); template void InternalBdd::filterExplicitVector(Odd const& odd, std::vector const& ddVariableIndices, std::vector const& sourceValues, std::vector& targetValues) const; template void InternalBdd::filterExplicitVector(Odd const& odd, std::vector const& ddVariableIndices, std::vector const& sourceValues, std::vector& targetValues) const; template InternalAdd InternalBdd::ite(InternalAdd const& thenAdd, InternalAdd const& elseAdd) const; template InternalAdd InternalBdd::ite(InternalAdd const& thenAdd, InternalAdd const& elseAdd) const; template InternalAdd InternalBdd::ite(InternalAdd const& thenAdd, InternalAdd const& elseAdd) const; } }