// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "icosphere.h" #include #include using namespace StormEigen; //-------------------------------------------------------------------------------- // icosahedron data //-------------------------------------------------------------------------------- #define X .525731112119133606 #define Z .850650808352039932 static GLfloat vdata[12][3] = { {-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z}, {0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X}, {Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0} }; static GLint tindices[20][3] = { {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1}, {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3}, {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6}, {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} }; //-------------------------------------------------------------------------------- IcoSphere::IcoSphere(unsigned int levels) { // init with an icosahedron for (int i = 0; i < 12; i++) mVertices.push_back(Map(vdata[i])); mIndices.push_back(new std::vector); std::vector& indices = *mIndices.back(); for (int i = 0; i < 20; i++) { for (int k = 0; k < 3; k++) indices.push_back(tindices[i][k]); } mListIds.push_back(0); while(mIndices.size()& IcoSphere::indices(int level) const { while (level>=int(mIndices.size())) const_cast(this)->_subdivide(); return *mIndices[level]; } void IcoSphere::_subdivide(void) { typedef unsigned long long Key; std::map edgeMap; const std::vector& indices = *mIndices.back(); mIndices.push_back(new std::vector); std::vector& refinedIndices = *mIndices.back(); int end = indices.size(); for (int i=0; ie0) std::swap(e0,e1); Key edgeKey = Key(e0) | (Key(e1)<<32); std::map::iterator it = edgeMap.find(edgeKey); if (it==edgeMap.end()) { ids1[k] = mVertices.size(); edgeMap[edgeKey] = ids1[k]; mVertices.push_back( (mVertices[e0]+mVertices[e1]).normalized() ); } else ids1[k] = it->second; } refinedIndices.push_back(ids0[0]); refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[2]); refinedIndices.push_back(ids0[1]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids0[2]); refinedIndices.push_back(ids1[2]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[2]); } mListIds.push_back(0); } void IcoSphere::draw(int level) { while (level>=int(mIndices.size())) const_cast(this)->_subdivide(); if (mListIds[level]==0) { mListIds[level] = glGenLists(1); glNewList(mListIds[level], GL_COMPILE); glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); glNormalPointer(GL_FLOAT, 0, mVertices[0].data()); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glDrawElements(GL_TRIANGLES, mIndices[level]->size(), GL_UNSIGNED_INT, &(mIndices[level]->at(0))); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glEndList(); } glCallList(mListIds[level]); }