/* Copyright 2005-2014 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ // // Self-organizing map in TBB flow::graph // // we will do a color map (the simple example.) // // serial algorithm // // initialize map with vectors (could be random, gradient, or something else) // for some number of iterations // update radius r, weight of change L // for each example V // find the best matching unit // for each part of map within radius of BMU W // update vector: W(t+1) = W(t) + w(dist)*L*(V - W(t)) #include "som.h" #include "tbb/task.h" std::ostream& operator<<( std::ostream &out, const SOM_element &s) { out << "("; for(int i=0;i<(int)s.w.size();++i) { out << s.w[i]; if(i < (int)s.w.size()-1) { out << ","; } } out << ")"; return out; } void remark_SOM_element(const SOM_element &s) { printf("("); for(int i=0;i<(int)s.w.size();++i) { printf("%g",s.w[i]); if(i < (int)s.w.size()-1) { printf(","); } } printf(")"); } std::ostream& operator<<( std::ostream &out, const search_result_type &s) { out << "<"; out << get(s); out << ", " << get(s); out << ", "; out << get(s); out << ">"; return out; } void remark_search_result_type(const search_result_type &s) { printf("<%g,%d,%d>", get(s), get(s), get(s)); } double randval( double lowlimit, double highlimit) { return double(rand()) / double(RAND_MAX) * (highlimit - lowlimit) + lowlimit; } void find_data_ranges(teaching_vector_type &teaching, SOM_element &max_range, SOM_element &min_range ) { if(teaching.size() == 0) return; max_range = min_range = teaching[0]; for(int i = 1; i < (int)teaching.size(); ++i) { max_range.elementwise_max(teaching[i]); min_range.elementwise_min(teaching[i]); } } void add_fraction_of_difference( SOM_element &to, SOM_element const &from, double frac) { for(int i = 0; i < (int)from.size(); ++i) { to[i] += frac*(from[i] - to[i]); } } double distance_squared(SOM_element x, SOM_element y) { double rval = 0.0; for(int i=0;i<(int)x.size();++i) { double diff = x[i] - y[i]; rval += diff*diff; } return rval; } void SOMap::initialize(InitializeType it, SOM_element &max_range, SOM_element &min_range) { for(int x = 0; x < xMax; ++x) { for(int y = 0; y < yMax; ++y) { for( int i = 0; i < (int)max_range.size(); ++i) { if(it == InitializeRandom) { my_map[x][y][i] = (randval(min_range[i], max_range[i])); } else if(it == InitializeGradient) { my_map[x][y][i] = ((double)(x+y)/(xMax+yMax)*(max_range[i]-min_range[i]) + min_range[i]); } } } } } // subsquare [low,high) double SOMap::BMU_range( const SOM_element &s, int &xval, int &yval, subsquare_type &r) { double min_distance_squared = DBL_MAX; task &my_task = task::self(); int min_x = -1; int min_y = -1; for(int x = r.rows().begin(); x != r.rows().end(); ++x) { for( int y = r.cols().begin(); y != r.cols().end(); ++y) { double dist = distance_squared(s,my_map[x][y]); if(dist < min_distance_squared) { min_distance_squared = dist; min_x = x; min_y = y; } if(cancel_test && my_task.is_cancelled()) { xval = r.rows().begin(); yval = r.cols().begin(); return DBL_MAX; } } } xval = min_x; yval = min_y; return sqrt(min_distance_squared); } void SOMap::epoch_update_range( SOM_element const &s, int epoch, int min_x, int min_y, double radius, double learning_rate, blocked_range &r) { int min_xiter = (int)((double)min_x - radius); if(min_xiter < 0) min_xiter = 0; int max_xiter = (int)((double)min_x + radius); if(max_xiter > (int)my_map.size()-1) max_xiter = (int)my_map.size()-1; for(int xx = r.begin(); xx <= r.end(); ++xx) { double xrsq = (xx-min_x)*(xx-min_x); double ysq = radius*radius - xrsq; // max extent of y influence double yd; if(ysq > 0) { yd = sqrt(ysq); int lb = (int)(min_y - yd); int ub = (int)(min_y + yd); for(int yy = lb; yy < ub; ++yy) { if(yy >= 0 && yy < (int)my_map[xx].size()) { // [xx, yy] is in the range of the update. double my_rsq = xrsq + (yy-min_y)*(yy-min_y); // distance from BMU squared double theta = exp(-(radius*radius) /(2.0* my_rsq)); add_fraction_of_difference(my_map[xx][yy], s, theta * learning_rate); } } } } } void SOMap::teach(teaching_vector_type &in) { for(int i = 0; i < nPasses; ++i ) { int j = (int)(randval(0, (double)in.size())); // this won't be reproducible. if(j == in.size()) --j; int min_x = -1; int min_y = -1; subsquare_type br2(0, (int)my_map.size(), 1, 0, (int)my_map[0].size(), 1); (void) BMU_range(in[j],min_x, min_y, br2); // just need min_x, min_y // radius of interest double radius = max_radius * exp(-(double)i*radius_decay_rate); // update circle is min_xiter to max_xiter inclusive. double learning_rate = max_learning_rate * exp( -(double)i * learning_decay_rate); epoch_update(in[j], i, min_x, min_y, radius, learning_rate); } } void SOMap::debug_output() { printf("SOMap:\n"); for(int i = 0; i < (int)(this->my_map.size()); ++i) { for(int j = 0; j < (int)(this->my_map[i].size()); ++j) { printf( "map[%d, %d] == ", i, j ); remark_SOM_element( this->my_map[i][j] ); printf("\n"); } } } #define RED 0 #define GREEN 1 #define BLUE 2 void readInputData() { my_teaching.push_back(SOM_element()); my_teaching.push_back(SOM_element()); my_teaching.push_back(SOM_element()); my_teaching.push_back(SOM_element()); my_teaching.push_back(SOM_element()); my_teaching[0][RED] = 1.0; my_teaching[0][GREEN] = 0.0; my_teaching[0][BLUE] = 0.0; my_teaching[1][RED] = 0.0; my_teaching[1][GREEN] = 1.0; my_teaching[1][BLUE] = 0.0; my_teaching[2][RED] = 0.0; my_teaching[2][GREEN] = 0.0; my_teaching[2][BLUE] = 1.0; my_teaching[3][RED] = 0.3; my_teaching[3][GREEN] = 0.3; my_teaching[3][BLUE] = 0.0; my_teaching[4][RED] = 0.5; my_teaching[4][GREEN] = 0.5; my_teaching[4][BLUE] = 0.9; }