#include "gtest/gtest.h" #include "storm-config.h" #include "src/logic/Formulas.h" #include "src/utility/solver.h" #include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" #include "src/modelchecker/results/HybridQuantitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" #include "src/parser/PrismParser.h" #include "src/builder/DdPrismModelBuilder.h" #include "src/models/symbolic/Dtmc.h" #include "src/settings/SettingsManager.h" TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice) { storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm"); // Build the die model with its reward model. #ifdef WINDOWS storm::builder::DdPrismModelBuilder::Options options; #else typename storm::builder::DdPrismModelBuilder::Options options; #endif options.buildRewards = true; options.rewardModelName = "coinflips"; std::shared_ptr> model = storm::builder::DdPrismModelBuilder::translateProgram(program, options); EXPECT_EQ(169ul, model->getNumberOfStates()); EXPECT_EQ(436ul, model->getNumberOfTransitions()); ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); std::shared_ptr> mdp = model->as>(); storm::modelchecker::HybridMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory())); auto labelFormula = std::make_shared("two"); auto eventuallyFormula = std::make_shared(labelFormula); auto minProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, eventuallyFormula); std::unique_ptr result = checker.check(*minProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult1 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); auto maxProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, eventuallyFormula); result = checker.check(*maxProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult2 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); labelFormula = std::make_shared("three"); eventuallyFormula = std::make_shared(labelFormula); minProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, eventuallyFormula); result = checker.check(*minProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult3 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); maxProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, eventuallyFormula); result = checker.check(*maxProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult4 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); labelFormula = std::make_shared("four"); eventuallyFormula = std::make_shared(labelFormula); minProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, eventuallyFormula); result = checker.check(*minProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult5 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); maxProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, eventuallyFormula); result = checker.check(*maxProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult6 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); labelFormula = std::make_shared("done"); auto reachabilityRewardFormula = std::make_shared(labelFormula); auto minRewardOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); result = checker.check(*minRewardOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult7 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); auto maxRewardOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); result = checker.check(*maxRewardOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult8 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); } TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader) { storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm"); // Build the die model with its reward model. #ifdef WINDOWS storm::builder::DdPrismModelBuilder::Options options; #else typename storm::builder::DdPrismModelBuilder::Options options; #endif options.buildRewards = true; options.rewardModelName = "rounds"; std::shared_ptr> model = storm::builder::DdPrismModelBuilder::translateProgram(program, options); EXPECT_EQ(3172ul, model->getNumberOfStates()); EXPECT_EQ(7144ul, model->getNumberOfTransitions()); ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); std::shared_ptr> mdp = model->as>(); storm::modelchecker::HybridMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory())); auto labelFormula = std::make_shared("elected"); auto eventuallyFormula = std::make_shared(labelFormula); auto minProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, eventuallyFormula); std::unique_ptr result = checker.check(*minProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::SymbolicQuantitativeCheckResult& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult(); EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); auto maxProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, eventuallyFormula); result = checker.check(*maxProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::SymbolicQuantitativeCheckResult& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult(); EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); labelFormula = std::make_shared("elected"); auto trueFormula = std::make_shared(true); auto boundedUntilFormula = std::make_shared(trueFormula, labelFormula, 25); minProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, boundedUntilFormula); result = checker.check(*minProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult3 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); maxProbabilityOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, boundedUntilFormula); result = checker.check(*maxProbabilityOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult4 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); labelFormula = std::make_shared("elected"); auto reachabilityRewardFormula = std::make_shared(labelFormula); auto minRewardOperatorFormula = std::make_shared(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); result = checker.check(*minRewardOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult5 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); auto maxRewardOperatorFormula = std::make_shared(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); result = checker.check(*maxRewardOperatorFormula); result->filter(storm::modelchecker::SymbolicQualitativeCheckResult(model->getReachableStates(), model->getInitialStates())); storm::modelchecker::HybridQuantitativeCheckResult& quantitativeResult6 = result->asHybridQuantitativeCheckResult(); EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); }