#include "basicValueIteration.h" #define CUSP_USE_TEXTURE_MEMORY #include <iostream> #include <chrono> #include <cuda_runtime.h> #include "cusparse_v2.h" #include "utility.h" #include "cuspExtension.h" #include <thrust/transform.h> #include <thrust/device_ptr.h> #include <thrust/functional.h> #include "storm-cudaplugin-config.h" #ifdef DEBUG #define CUDA_CHECK_ALL_ERRORS() do { cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) { std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ") in Line " << __LINE__ << std::endl; } if (errAsync != cudaSuccess) { std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ") in Line " << __LINE__ << std::endl; } } while(false) #else #define CUDA_CHECK_ALL_ERRORS() do {} while (false) #endif template<typename T, bool Relative> struct equalModuloPrecision : public thrust::binary_function<T,T,T> { __host__ __device__ T operator()(const T &x, const T &y) const { if (Relative) { if (y == 0) { return ((x >= 0) ? (x) : (-x)); } const T result = (x - y) / y; return ((result >= 0) ? (result) : (-result)); } else { const T result = (x - y); return ((result >= 0) ? (result) : (-result)); } } }; template<typename IndexType, typename ValueType> void exploadVector(std::vector<std::pair<IndexType, ValueType>> const& inputVector, std::vector<IndexType>& indexVector, std::vector<ValueType>& valueVector) { indexVector.reserve(inputVector.size()); valueVector.reserve(inputVector.size()); for (size_t i = 0; i < inputVector.size(); ++i) { indexVector.push_back(inputVector.at(i).first); valueVector.push_back(inputVector.at(i).second); } } // TEMPLATE VERSION template <bool Minimize, bool Relative, typename IndexType, typename ValueType> bool basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, double const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices, size_t& iterationCount) { //std::vector<IndexType> matrixColumnIndices; //std::vector<ValueType> matrixValues; //exploadVector<IndexType, ValueType>(columnIndicesAndValues, matrixColumnIndices, matrixValues); bool errorOccured = false; IndexType* device_matrixRowIndices = nullptr; ValueType* device_matrixColIndicesAndValues = nullptr; ValueType* device_x = nullptr; ValueType* device_xSwap = nullptr; ValueType* device_b = nullptr; ValueType* device_multiplyResult = nullptr; IndexType* device_nondeterministicChoiceIndices = nullptr; #ifdef DEBUG std::cout.sync_with_stdio(true); std::cout << "(DLL) Entering CUDA Function: basicValueIteration_mvReduce" << std::endl; std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%)." << std::endl; size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size(); std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl; #endif const IndexType matrixRowCount = matrixRowIndices.size() - 1; const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1; const IndexType matrixNnzCount = columnIndicesAndValues.size(); cudaError_t cudaMallocResult; bool converged = false; iterationCount = 0; CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1)); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } #ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT #define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE true #else #define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE false #endif if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) { CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } } else { CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixColCount + 1)); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl; errorOccured = true; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished allocating memory." << std::endl; #endif // Memory allocated, copy data to device cudaError_t cudaCopyResult; CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } // Copy all data as floats are expanded to 64bits :/ if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) { CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } } else { CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } // Preset the xSwap to zeros... CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } // Preset the multiplyResult to zeros... CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixColCount + 1), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished copying data to GPU memory." << std::endl; #endif // Data is on device, start Kernel while (!converged && iterationCount < maxIterationCount) { // In a sub-area since transfer of control via label evades initialization cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult); CUDA_CHECK_ALL_ERRORS(); thrust::device_ptr<ValueType> devicePtrThrust_b(device_b); thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult); // Transform: Add multiplyResult + b inplace to multiplyResult thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>()); CUDA_CHECK_ALL_ERRORS(); // Reduce: Reduce multiplyResult to a new x vector cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult); CUDA_CHECK_ALL_ERRORS(); // Check for convergence // Transform: x = abs(x - xSwap)/ xSwap thrust::device_ptr<ValueType> devicePtrThrust_x(device_x); thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount); thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap); thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>()); CUDA_CHECK_ALL_ERRORS(); // Reduce: get Max over x and check for res < Precision ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>()); CUDA_CHECK_ALL_ERRORS(); converged = (maxX < precision); ++iterationCount; // Swap pointers, device_x always contains the most current result std::swap(device_x, device_xSwap); } if (!converged && (iterationCount == maxIterationCount)) { iterationCount = 0; errorOccured = true; } #ifdef DEBUG std::cout << "(DLL) Finished kernel execution." << std::endl; std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl; #endif // Get x back from the device cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl; errorOccured = true; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished copying result data." << std::endl; #endif // All code related to freeing memory and clearing up the device cleanup: if (device_matrixRowIndices != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_matrixRowIndices = nullptr; } if (device_matrixColIndicesAndValues != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_matrixColIndicesAndValues = nullptr; } if (device_x != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_x); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_x = nullptr; } if (device_xSwap != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_xSwap); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_xSwap = nullptr; } if (device_b != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_b); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_b = nullptr; } if (device_multiplyResult != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_multiplyResult); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_multiplyResult = nullptr; } if (device_nondeterministicChoiceIndices != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl; errorOccured = true; } device_nondeterministicChoiceIndices = nullptr; } #ifdef DEBUG std::cout << "(DLL) Finished cleanup." << std::endl; #endif return !errorOccured; } template <typename IndexType, typename ValueType> void basicValueIteration_spmv(uint_fast64_t const matrixColCount, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType> const& x, std::vector<ValueType>& b) { IndexType* device_matrixRowIndices = nullptr; ValueType* device_matrixColIndicesAndValues = nullptr; ValueType* device_x = nullptr; ValueType* device_multiplyResult = nullptr; #ifdef DEBUG std::cout.sync_with_stdio(true); std::cout << "(DLL) Entering CUDA Function: basicValueIteration_spmv" << std::endl; std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl; size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size(); std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl; #endif const IndexType matrixRowCount = matrixRowIndices.size() - 1; const IndexType matrixNnzCount = columnIndicesAndValues.size(); cudaError_t cudaMallocResult; CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1)); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } #ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } #else CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } #endif CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished allocating memory." << std::endl; #endif // Memory allocated, copy data to device cudaError_t cudaCopyResult; CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl; goto cleanup; } #ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl; goto cleanup; } #else CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl; goto cleanup; } #endif CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl; goto cleanup; } // Preset the multiplyResult to zeros... CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished copying data to GPU memory." << std::endl; #endif cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult); CUDA_CHECK_ALL_ERRORS(); #ifdef DEBUG std::cout << "(DLL) Finished kernel execution." << std::endl; #endif // Get result back from the device cudaCopyResult = cudaMemcpy(b.data(), device_multiplyResult, sizeof(ValueType) * matrixRowCount, cudaMemcpyDeviceToHost); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl; goto cleanup; } #ifdef DEBUG std::cout << "(DLL) Finished copying result data." << std::endl; #endif // All code related to freeing memory and clearing up the device cleanup: if (device_matrixRowIndices != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl; } device_matrixRowIndices = nullptr; } if (device_matrixColIndicesAndValues != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl; } device_matrixColIndicesAndValues = nullptr; } if (device_x != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_x); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl; } device_x = nullptr; } if (device_multiplyResult != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_multiplyResult); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl; } device_multiplyResult = nullptr; } #ifdef DEBUG std::cout << "(DLL) Finished cleanup." << std::endl; #endif } template <typename ValueType> void basicValueIteration_addVectorsInplace(std::vector<ValueType>& a, std::vector<ValueType> const& b) { ValueType* device_a = nullptr; ValueType* device_b = nullptr; const size_t vectorSize = std::max(a.size(), b.size()); cudaError_t cudaMallocResult; CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_a), sizeof(ValueType) * vectorSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector a, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * vectorSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } // Memory allocated, copy data to device cudaError_t cudaCopyResult; CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_a, a.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector a, Error Code " << cudaCopyResult << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl; goto cleanup; } do { // Transform: Add multiplyResult + b inplace to multiplyResult thrust::device_ptr<ValueType> devicePtrThrust_a(device_a); thrust::device_ptr<ValueType> devicePtrThrust_b(device_b); thrust::transform(devicePtrThrust_a, devicePtrThrust_a + vectorSize, devicePtrThrust_b, devicePtrThrust_a, thrust::plus<ValueType>()); CUDA_CHECK_ALL_ERRORS(); } while (false); // Get result back from the device cudaCopyResult = cudaMemcpy(a.data(), device_a, sizeof(ValueType) * vectorSize, cudaMemcpyDeviceToHost); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl; goto cleanup; } // All code related to freeing memory and clearing up the device cleanup: if (device_a != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_a); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector a, Error Code " << cudaFreeResult << "." << std::endl; } device_a = nullptr; } if (device_b != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_b); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl; } device_b = nullptr; } } template <typename IndexType, typename ValueType, bool Minimize> void basicValueIteration_reduceGroupedVector(std::vector<ValueType> const& groupedVector, std::vector<IndexType> const& grouping, std::vector<ValueType>& targetVector) { ValueType* device_groupedVector = nullptr; IndexType* device_grouping = nullptr; ValueType* device_target = nullptr; const size_t groupedSize = groupedVector.size(); const size_t groupingSize = grouping.size(); const size_t targetSize = targetVector.size(); cudaError_t cudaMallocResult; CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_groupedVector), sizeof(ValueType) * groupedSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector groupedVector, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_grouping), sizeof(IndexType) * groupingSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector grouping, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_target), sizeof(ValueType) * targetSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector targetVector, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } // Memory allocated, copy data to device cudaError_t cudaCopyResult; CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_groupedVector, groupedVector.data(), sizeof(ValueType) * groupedSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector groupedVector, Error Code " << cudaCopyResult << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_grouping, grouping.data(), sizeof(IndexType) * groupingSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector grouping, Error Code " << cudaCopyResult << std::endl; goto cleanup; } do { // Reduce: Reduce multiplyResult to a new x vector cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(groupingSize - 1, groupedSize, device_grouping, device_target, device_groupedVector); CUDA_CHECK_ALL_ERRORS(); } while (false); // Get result back from the device cudaCopyResult = cudaMemcpy(targetVector.data(), device_target, sizeof(ValueType) * targetSize, cudaMemcpyDeviceToHost); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl; goto cleanup; } // All code related to freeing memory and clearing up the device cleanup: if (device_groupedVector != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_groupedVector); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector groupedVector, Error Code " << cudaFreeResult << "." << std::endl; } device_groupedVector = nullptr; } if (device_grouping != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_grouping); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector grouping, Error Code " << cudaFreeResult << "." << std::endl; } device_grouping = nullptr; } if (device_target != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_target); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector target, Error Code " << cudaFreeResult << "." << std::endl; } device_target = nullptr; } } template <typename ValueType, bool Relative> void basicValueIteration_equalModuloPrecision(std::vector<ValueType> const& x, std::vector<ValueType> const& y, ValueType& maxElement) { ValueType* device_x = nullptr; ValueType* device_y = nullptr; const size_t vectorSize = x.size(); cudaError_t cudaMallocResult; CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * vectorSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_y), sizeof(ValueType) * vectorSize); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector y, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; } // Memory allocated, copy data to device cudaError_t cudaCopyResult; CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl; goto cleanup; } CUDA_CHECK_ALL_ERRORS(); cudaCopyResult = cudaMemcpy(device_y, y.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector y, Error Code " << cudaCopyResult << std::endl; goto cleanup; } do { // Transform: x = abs(x - xSwap)/ xSwap thrust::device_ptr<ValueType> devicePtrThrust_x(device_x); thrust::device_ptr<ValueType> devicePtrThrust_y(device_y); thrust::transform(devicePtrThrust_x, devicePtrThrust_x + vectorSize, devicePtrThrust_y, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>()); CUDA_CHECK_ALL_ERRORS(); // Reduce: get Max over x and check for res < Precision maxElement = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x + vectorSize, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>()); CUDA_CHECK_ALL_ERRORS(); } while (false); // All code related to freeing memory and clearing up the device cleanup: if (device_x != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_x); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl; } device_x = nullptr; } if (device_y != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_y); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector y, Error Code " << cudaFreeResult << "." << std::endl; } device_y = nullptr; } } /* * Declare and implement all exported functions for these Kernels here * */ void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b) { basicValueIteration_spmv<uint_fast64_t, double>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b); } void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b) { basicValueIteration_addVectorsInplace<double>(a, b); } void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) { basicValueIteration_reduceGroupedVector<uint_fast64_t, double, true>(groupedVector, grouping, targetVector); } void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) { basicValueIteration_reduceGroupedVector<uint_fast64_t, double, false>(groupedVector, grouping, targetVector); } void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) { basicValueIteration_equalModuloPrecision<double, true>(x, y, maxElement); } void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) { basicValueIteration_equalModuloPrecision<double, false>(x, y, maxElement); } // Float void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b) { basicValueIteration_spmv<uint_fast64_t, float>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b); } void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b) { basicValueIteration_addVectorsInplace<float>(a, b); } void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) { basicValueIteration_reduceGroupedVector<uint_fast64_t, float, true>(groupedVector, grouping, targetVector); } void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) { basicValueIteration_reduceGroupedVector<uint_fast64_t, float, false>(groupedVector, grouping, targetVector); } void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) { basicValueIteration_equalModuloPrecision<float, true>(x, y, maxElement); } void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) { basicValueIteration_equalModuloPrecision<float, false>(x, y, maxElement); } bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) { if (relativePrecisionCheck) { return basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } else { return basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } } bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) { if (relativePrecisionCheck) { return basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } else { return basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } } bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) { if (relativePrecisionCheck) { return basicValueIteration_mvReduce<true, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } else { return basicValueIteration_mvReduce<true, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } } bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) { if (relativePrecisionCheck) { return basicValueIteration_mvReduce<false, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } else { return basicValueIteration_mvReduce<false, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); } } size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) { size_t const valueTypeSize = sizeof(double); size_t const indexTypeSize = sizeof(uint_fast64_t); /* IndexType* device_matrixRowIndices = nullptr; IndexType* device_matrixColIndices = nullptr; ValueType* device_matrixValues = nullptr; ValueType* device_x = nullptr; ValueType* device_xSwap = nullptr; ValueType* device_b = nullptr; ValueType* device_multiplyResult = nullptr; IndexType* device_nondeterministicChoiceIndices = nullptr; */ // Row Indices, Column Indices, Values, Choice Indices size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize); // Vectors x, xSwap, b, multiplyResult size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize); return (matrixDataSize + vectorSizes); } size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) { size_t const valueTypeSize = sizeof(float); size_t const indexTypeSize = sizeof(uint_fast64_t); /* IndexType* device_matrixRowIndices = nullptr; IndexType* device_matrixColIndices = nullptr; ValueType* device_matrixValues = nullptr; ValueType* device_x = nullptr; ValueType* device_xSwap = nullptr; ValueType* device_b = nullptr; ValueType* device_multiplyResult = nullptr; IndexType* device_nondeterministicChoiceIndices = nullptr; */ // Row Indices, Column Indices, Values, Choice Indices size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize); // Vectors x, xSwap, b, multiplyResult size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize); return (matrixDataSize + vectorSizes); }