// Small bench routine for Eigen available in Eigen // (C) Desire NUENTSA WAKAM, INRIA #include #include #include #include #include #include #include #include //#include #include // #include #include #include using namespace std; using namespace StormEigen; int main(int argc, char **args) { SparseMatrix A; typedef SparseMatrix::Index Index; typedef Matrix DenseMatrix; typedef Matrix DenseRhs; VectorXd b, x, tmp; BenchTimer timer,totaltime; //SparseLU > solver; // SuperLU > solver; ConjugateGradient, Lower,IncompleteCholesky > solver; ifstream matrix_file; string line; int n; // Set parameters // solver.iparm(IPARM_THREAD_NBR) = 4; /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ if (argc < 2) assert(false && "please, give the matrix market file "); timer.start(); totaltime.start(); loadMarket(A, args[1]); cout << "End charging matrix " << endl; bool iscomplex=false, isvector=false; int sym; getMarketHeader(args[1], sym, iscomplex, isvector); if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} if (sym != 0) { // symmetric matrices, only the lower part is stored SparseMatrix temp; temp = A; A = temp.selfadjointView(); } timer.stop(); n = A.cols(); // ====== TESTS FOR SPARSE TUTORIAL ====== // cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl; // SparseMatrix mat1(A); // SparseMatrix mat2; // cout << " norm of A " << mat1.norm() << endl; ; // PermutationMatrix perm(n); // perm.resize(n,1); // perm.indices().setLinSpaced(n, 0, n-1); // mat2 = perm * mat1; // mat.subrows(); // mat2.resize(n,n); // mat2.reserve(10); // mat2.setConstant(); // std::cout<< "NORM " << mat1.squaredNorm()<< endl; cout<< "Time to load the matrix " << timer.value() < 2) loadMarketVector(b, args[2]); else { b.resize(n); tmp.resize(n); // tmp.setRandom(); for (int i = 0; i < n; i++) tmp(i) = i; b = A * tmp ; } // Scaling > scal; // scal.computeRef(A); // b = scal.LeftScaling().cwiseProduct(b); /* Compute the factorization */ cout<< "Starting the factorization "<< endl; timer.reset(); timer.start(); cout<< "Size of Input Matrix "<< b.size()<<"\n\n"; cout<< "Rows and columns "<< A.rows() <<" " <