/* TSP, Traveling Salesman Problem */

/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */

/* The Traveling Salesman Problem (TSP) is stated as follows.
   Let a directed graph G = (V, E) be given, where V = {1, ..., n} is
   a set of nodes, E <= V x V is a set of arcs. Let also each arc
   e = (i,j) be assigned a number c[i,j], which is the length of the
   arc e. The problem is to find a closed path of minimal length going
   through each node of G exactly once. */

param n, integer, >= 3;
/* number of nodes */

set V := 1..n;
/* set of nodes */

set E, within V cross V;
/* set of arcs */

param c{(i,j) in E};
/* distance from node i to node j */

var x{(i,j) in E}, binary;
/* x[i,j] = 1 means that the salesman goes from node i to node j */

minimize total: sum{(i,j) in E} c[i,j] * x[i,j];
/* the objective is to make the path length as small as possible */

s.t. leave{i in V}: sum{(i,j) in E} x[i,j] = 1;
/* the salesman leaves each node i exactly once */

s.t. enter{j in V}: sum{(i,j) in E} x[i,j] = 1;
/* the salesman enters each node j exactly once */

/* Constraints above are not sufficient to describe valid tours, so we
   need to add constraints to eliminate subtours, i.e. tours which have
   disconnected components. Although there are many known ways to do
   that, I invented yet another way. The general idea is the following.
   Let the salesman sell, say, cars, starting the travel from node 1,
   where he has n cars. If we require the salesman to sell exactly one
   car in each node, he will need to go through all nodes to satisfy
   this requirement, thus, all subtours will be eliminated. */

var y{(i,j) in E}, >= 0;
/* y[i,j] is the number of cars, which the salesman has after leaving
   node i and before entering node j; in terms of the network analysis,
   y[i,j] is a flow through arc (i,j) */

s.t. cap{(i,j) in E}: y[i,j] <= (n-1) * x[i,j];
/* if arc (i,j) does not belong to the salesman's tour, its capacity
   must be zero; it is obvious that on leaving a node, it is sufficient
   to have not more than n-1 cars */

s.t. node{i in V}:
/* node[i] is a conservation constraint for node i */

      sum{(j,i) in E} y[j,i]
      /* summary flow into node i through all ingoing arcs */

      + (if i = 1 then n)
      /* plus n cars which the salesman has at starting node */

      = /* must be equal to */

      sum{(i,j) in E} y[i,j]
      /* summary flow from node i through all outgoing arcs */

      + 1;
      /* plus one car which the salesman sells at node i */

solve;

printf "Optimal tour has length %d\n",
   sum{(i,j) in E} c[i,j] * x[i,j];
printf("From node   To node   Distance\n");
printf{(i,j) in E: x[i,j]} "      %3d       %3d   %8g\n",
   i, j, c[i,j];

data;

/* These data correspond to the symmetric instance ulysses16 from:

   Reinelt, G.: TSPLIB - A travelling salesman problem library.
   ORSA-Journal of the Computing 3 (1991) 376-84;
   http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib */

/* The optimal solution is 6859 */

param n := 16;

param : E : c :=
    1  2   509
    1  3   501
    1  4   312
    1  5  1019
    1  6   736
    1  7   656
    1  8    60
    1  9  1039
    1 10   726
    1 11  2314
    1 12   479
    1 13   448
    1 14   479
    1 15   619
    1 16   150
    2  1   509
    2  3   126
    2  4   474
    2  5  1526
    2  6  1226
    2  7  1133
    2  8   532
    2  9  1449
    2 10  1122
    2 11  2789
    2 12   958
    2 13   941
    2 14   978
    2 15  1127
    2 16   542
    3  1   501
    3  2   126
    3  4   541
    3  5  1516
    3  6  1184
    3  7  1084
    3  8   536
    3  9  1371
    3 10  1045
    3 11  2728
    3 12   913
    3 13   904
    3 14   946
    3 15  1115
    3 16   499
    4  1   312
    4  2   474
    4  3   541
    4  5  1157
    4  6   980
    4  7   919
    4  8   271
    4  9  1333
    4 10  1029
    4 11  2553
    4 12   751
    4 13   704
    4 14   720
    4 15   783
    4 16   455
    5  1  1019
    5  2  1526
    5  3  1516
    5  4  1157
    5  6   478
    5  7   583
    5  8   996
    5  9   858
    5 10   855
    5 11  1504
    5 12   677
    5 13   651
    5 14   600
    5 15   401
    5 16  1033
    6  1   736
    6  2  1226
    6  3  1184
    6  4   980
    6  5   478
    6  7   115
    6  8   740
    6  9   470
    6 10   379
    6 11  1581
    6 12   271
    6 13   289
    6 14   261
    6 15   308
    6 16   687
    7  1   656
    7  2  1133
    7  3  1084
    7  4   919
    7  5   583
    7  6   115
    7  8   667
    7  9   455
    7 10   288
    7 11  1661
    7 12   177
    7 13   216
    7 14   207
    7 15   343
    7 16   592
    8  1    60
    8  2   532
    8  3   536
    8  4   271
    8  5   996
    8  6   740
    8  7   667
    8  9  1066
    8 10   759
    8 11  2320
    8 12   493
    8 13   454
    8 14   479
    8 15   598
    8 16   206
    9  1  1039
    9  2  1449
    9  3  1371
    9  4  1333
    9  5   858
    9  6   470
    9  7   455
    9  8  1066
    9 10   328
    9 11  1387
    9 12   591
    9 13   650
    9 14   656
    9 15   776
    9 16   933
   10  1   726
   10  2  1122
   10  3  1045
   10  4  1029
   10  5   855
   10  6   379
   10  7   288
   10  8   759
   10  9   328
   10 11  1697
   10 12   333
   10 13   400
   10 14   427
   10 15   622
   10 16   610
   11  1  2314
   11  2  2789
   11  3  2728
   11  4  2553
   11  5  1504
   11  6  1581
   11  7  1661
   11  8  2320
   11  9  1387
   11 10  1697
   11 12  1838
   11 13  1868
   11 14  1841
   11 15  1789
   11 16  2248
   12  1   479
   12  2   958
   12  3   913
   12  4   751
   12  5   677
   12  6   271
   12  7   177
   12  8   493
   12  9   591
   12 10   333
   12 11  1838
   12 13    68
   12 14   105
   12 15   336
   12 16   417
   13  1   448
   13  2   941
   13  3   904
   13  4   704
   13  5   651
   13  6   289
   13  7   216
   13  8   454
   13  9   650
   13 10   400
   13 11  1868
   13 12    68
   13 14    52
   13 15   287
   13 16   406
   14  1   479
   14  2   978
   14  3   946
   14  4   720
   14  5   600
   14  6   261
   14  7   207
   14  8   479
   14  9   656
   14 10   427
   14 11  1841
   14 12   105
   14 13    52
   14 15   237
   14 16   449
   15  1   619
   15  2  1127
   15  3  1115
   15  4   783
   15  5   401
   15  6   308
   15  7   343
   15  8   598
   15  9   776
   15 10   622
   15 11  1789
   15 12   336
   15 13   287
   15 14   237
   15 16   636
   16  1   150
   16  2   542
   16  3   499
   16  4   455
   16  5  1033
   16  6   687
   16  7   592
   16  8   206
   16  9   933
   16 10   610
   16 11  2248
   16 12   417
   16 13   406
   16 14   449
   16 15   636
;

end;