#include "src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.h" #include "src/solver/SymbolicMinMaxLinearEquationSolver.h" #include "src/storage/dd/CuddDdManager.h" #include "src/storage/dd/CuddAdd.h" #include "src/storage/dd/CuddBdd.h" #include "src/storage/dd/CuddOdd.h" #include "src/utility/graph.h" #include "src/utility/constants.h" #include "src/models/symbolic/StandardRewardModel.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" #include "src/exceptions/InvalidPropertyException.h" #include "src/exceptions/InvalidArgumentException.h" namespace storm { namespace modelchecker { namespace helper { template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 and 1 of satisfying the until-formula. std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01; if (minimize) { statesWithProbability01 = storm::utility::graph::performProb01Min(model, phiStates, psiStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(model, phiStates, psiStates); } storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates(); // Perform some logging. STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states."); STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd(); prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn; subvector = subvector.sumAbstract(model.getColumnVariables()); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Now solve the resulting equation system. std::unique_ptr<storm::solver::SymbolicMinMaxLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getIllegalMask() && maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getNondeterminismVariables(), model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> result = solver->solveEquationSystem(minimize, model.getManager().getAddZero(), subvector); return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + result)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd())); } } } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeNextProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) { storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd(); return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result.sumAbstract(model.getColumnVariables()))); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. all states that have // probability 0 or 1 of satisfying the until-formula. storm::dd::Bdd<DdType> statesWithProbabilityGreater0; if (minimize) { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model, transitionMatrix.notZero(), phiStates, psiStates); } else { statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates); } storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates(); // If there are maybe states, we need to perform matrix-vector multiplications. if (!maybeStates.isZero()) { // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all // maybe states. storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables()); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); std::unique_ptr<storm::solver::SymbolicMinMaxLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getIllegalMask() && maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getNondeterminismVariables(), model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(minimize, model.getManager().getAddZero(), &subvector, stepBound); return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd() + result)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd())); } } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Perform the matrix-vector multiplication. std::unique_ptr<storm::solver::SymbolicMinMaxLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(model.getTransitionMatrix(), model.getReachableStates(), model.getIllegalMask(), model.getRowVariables(), model.getColumnVariables(), model.getNondeterminismVariables(), model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(minimize, rewardModel.getStateRewardVector(), nullptr, stepBound); return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result)); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeCumulativeRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) { // Only compute the result if the model has at least one reward this->getModel(). STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Compute the reward vector to add in each step based on the available reward models. storm::dd::Add<DdType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix, model.getColumnVariables()); // Perform the matrix-vector multiplication. std::unique_ptr<storm::solver::SymbolicMinMaxLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(model.getTransitionMatrix(), model.getReachableStates(), model.getIllegalMask(), model.getRowVariables(), model.getColumnVariables(), model.getNondeterminismVariables(), model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(minimize, model.getManager().getAddZero(), &totalRewardVector, stepBound); return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result)); } template<storm::dd::DdType DdType, typename ValueType> std::unique_ptr<CheckResult> SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, RewardModelType const& rewardModel, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) { // Only compute the result if there is at least one reward model. STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::dd::Bdd<DdType> infinityStates; storm::dd::Bdd<DdType> transitionMatrixBdd = transitionMatrix.notZero(); if (minimize) { infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); } else { infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); } infinityStates = !infinityStates && model.getReachableStates(); storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates(); STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>()))); } else { // If there are maybe states, we need to solve an equation system. if (!maybeStates.isZero()) { // Create the matrix and the vector for the equation system. storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting // non-maybe states in the matrix. storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the state reward vector to use in the computation. storm::dd::Add<DdType> subvector = rewardModel.getTotalRewardVector(maybeStatesAdd, submatrix, model.getColumnVariables()); // Finally cut away all columns targeting non-maybe states. submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); // Now solve the resulting equation system. std::unique_ptr<storm::solver::SymbolicMinMaxLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getIllegalMask() && maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getNondeterminismVariables(), model.getRowColumnMetaVariablePairs()); storm::dd::Add<DdType> result = solver->solveEquationSystem(minimize, model.getManager().getAddZero(), subvector); return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + result)); } else { return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()))); } } } template class SymbolicMdpPrctlHelper<storm::dd::DdType::CUDD, double>; } } }