#include "src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h" #include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h" #include "src/models/sparse/StandardRewardModel.h" #include "src/storage/StronglyConnectedComponentDecomposition.h" #include "src/storage/MaximalEndComponentDecomposition.h" #include "src/settings/SettingsManager.h" #include "src/settings/modules/GeneralSettings.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/storage/expressions/Variable.h" #include "src/storage/expressions/Expression.h" #include "src/utility/numerical.h" #include "src/solver/MinMaxLinearEquationSolver.h" #include "src/solver/LpSolver.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { namespace helper { template<typename ValueType> void SparseMarkovAutomatonCslHelper<ValueType>::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { // Start by computing four sparse matrices: // * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states. // * a matrix aMarkovianToProbabilistic with all (discretized) transitions from Markovian non-goal states to all probabilistic non-goal states. // * a matrix aProbabilistic with all (non-discretized) transitions from probabilistic non-goal states to other probabilistic non-goal states. // * a matrix aProbabilisticToMarkovian with all (non-discretized) transitions from probabilistic non-goal states to all Markovian non-goal states. typename storm::storage::SparseMatrix<ValueType> aMarkovian = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, markovianNonGoalStates, true); typename storm::storage::SparseMatrix<ValueType> aMarkovianToProbabilistic = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, probabilisticNonGoalStates); typename storm::storage::SparseMatrix<ValueType> aProbabilistic = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, probabilisticNonGoalStates); typename storm::storage::SparseMatrix<ValueType> aProbabilisticToMarkovian = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, markovianNonGoalStates); // The matrices with transitions from Markovian states need to be digitized. // Digitize aMarkovian. Based on whether the transition is a self-loop or not, we apply the two digitization rules. uint_fast64_t rowIndex = 0; for (auto state : markovianNonGoalStates) { for (auto& element : aMarkovian.getRow(rowIndex)) { ValueType eTerm = std::exp(-exitRates[state] * delta); if (element.getColumn() == rowIndex) { element.setValue((storm::utility::one<ValueType>() - eTerm) * element.getValue() + eTerm); } else { element.setValue((storm::utility::one<ValueType>() - eTerm) * element.getValue()); } } ++rowIndex; } // Digitize aMarkovianToProbabilistic. As there are no self-loops in this case, we only need to apply the digitization formula for regular successors. rowIndex = 0; for (auto state : markovianNonGoalStates) { for (auto& element : aMarkovianToProbabilistic.getRow(rowIndex)) { element.setValue((1 - std::exp(-exitRates[state] * delta)) * element.getValue()); } ++rowIndex; } // Initialize the two vectors that hold the variable one-step probabilities to all target states for probabilistic and Markovian (non-goal) states. std::vector<ValueType> bProbabilistic(aProbabilistic.getRowCount()); std::vector<ValueType> bMarkovian(markovianNonGoalStates.getNumberOfSetBits()); // Compute the two fixed right-hand side vectors, one for Markovian states and one for the probabilistic ones. std::vector<ValueType> bProbabilisticFixed = transitionMatrix.getConstrainedRowSumVector(probabilisticNonGoalStates, goalStates); std::vector<ValueType> bMarkovianFixed; bMarkovianFixed.reserve(markovianNonGoalStates.getNumberOfSetBits()); for (auto state : markovianNonGoalStates) { bMarkovianFixed.push_back(storm::utility::zero<ValueType>()); for (auto& element : transitionMatrix.getRowGroup(state)) { if (goalStates.get(element.getColumn())) { bMarkovianFixed.back() += (1 - std::exp(-exitRates[state] * delta)) * element.getValue(); } } } std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(aProbabilistic); // Perform the actual value iteration // * loop until the step bound has been reached // * in the loop: // * perform value iteration using A_PSwG, v_PS and the vector b where b = (A * 1_G)|PS + A_PStoMS * v_MS // and 1_G being the characteristic vector for all goal states. // * perform one timed-step using v_MS := A_MSwG * v_MS + A_MStoPS * v_PS + (A * 1_G)|MS std::vector<ValueType> markovianNonGoalValuesSwap(markovianNonGoalValues); std::vector<ValueType> multiplicationResultScratchMemory(aProbabilistic.getRowCount()); std::vector<ValueType> aProbabilisticScratchMemory(probabilisticNonGoalValues.size()); for (uint_fast64_t currentStep = 0; currentStep < numberOfSteps; ++currentStep) { // Start by (re-)computing bProbabilistic = bProbabilisticFixed + aProbabilisticToMarkovian * vMarkovian. aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); storm::utility::vector::addVectors(bProbabilistic, bProbabilisticFixed, bProbabilistic); // Now perform the inner value iteration for probabilistic states. solver->solveEquationSystem(dir, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); // (Re-)compute bMarkovian = bMarkovianFixed + aMarkovianToProbabilistic * vProbabilistic. aMarkovianToProbabilistic.multiplyWithVector(probabilisticNonGoalValues, bMarkovian); storm::utility::vector::addVectors(bMarkovian, bMarkovianFixed, bMarkovian); aMarkovian.multiplyWithVector(markovianNonGoalValues, markovianNonGoalValuesSwap); std::swap(markovianNonGoalValues, markovianNonGoalValuesSwap); storm::utility::vector::addVectors(markovianNonGoalValues, bMarkovian, markovianNonGoalValues); } // After the loop, perform one more step of the value iteration for PS states. aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); storm::utility::vector::addVectors(bProbabilistic, bProbabilisticFixed, bProbabilistic); solver->solveEquationSystem(dir, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); } template<typename ValueType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeBoundedUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, double lowerBound, double upperBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); // (1) Compute the accuracy we need to achieve the required error bound. ValueType maxExitRate = 0; for (auto value : exitRateVector) { maxExitRate = std::max(maxExitRate, value); } ValueType delta = (2 * storm::settings::generalSettings().getPrecision()) / (upperBound * maxExitRate * maxExitRate); // (2) Compute the number of steps we need to make for the interval. uint_fast64_t numberOfSteps = static_cast<uint_fast64_t>(std::ceil((upperBound - lowerBound) / delta)); STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [" << lowerBound << ", " << upperBound << "]." << std::endl); // (3) Compute the non-goal states and initialize two vectors // * vProbabilistic holds the probability values of probabilistic non-goal states. // * vMarkovian holds the probability values of Markovian non-goal states. storm::storage::BitVector const& markovianNonGoalStates = markovianStates & ~psiStates; storm::storage::BitVector const& probabilisticNonGoalStates = ~markovianStates & ~psiStates; std::vector<ValueType> vProbabilistic(probabilisticNonGoalStates.getNumberOfSetBits()); std::vector<ValueType> vMarkovian(markovianNonGoalStates.getNumberOfSetBits()); computeBoundedReachabilityProbabilities(dir, transitionMatrix, exitRateVector, markovianStates, psiStates, markovianNonGoalStates, probabilisticNonGoalStates, vMarkovian, vProbabilistic, delta, numberOfSteps, minMaxLinearEquationSolverFactory); // (4) If the lower bound of interval was non-zero, we need to take the current values as the starting values for a subsequent value iteration. if (lowerBound != storm::utility::zero<ValueType>()) { std::vector<ValueType> vAllProbabilistic((~markovianStates).getNumberOfSetBits()); std::vector<ValueType> vAllMarkovian(markovianStates.getNumberOfSetBits()); // Create the starting value vectors for the next value iteration based on the results of the previous one. storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, psiStates % ~markovianStates, storm::utility::one<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, ~psiStates % ~markovianStates, vProbabilistic); storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, psiStates % markovianStates, storm::utility::one<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, ~psiStates % markovianStates, vMarkovian); // Compute the number of steps to reach the target interval. numberOfSteps = static_cast<uint_fast64_t>(std::ceil(lowerBound / delta)); STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [0, " << lowerBound << "]." << std::endl); // Compute the bounded reachability for interval [0, b-a]. computeBoundedReachabilityProbabilities(dir, transitionMatrix, exitRateVector, markovianStates, storm::storage::BitVector(numberOfStates), markovianStates, ~markovianStates, vAllMarkovian, vAllProbabilistic, delta, numberOfSteps, minMaxLinearEquationSolverFactory); // Create the result vector out of vAllProbabilistic and vAllMarkovian and return it. std::vector<ValueType> result(numberOfStates, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues(result, ~markovianStates, vAllProbabilistic); storm::utility::vector::setVectorValues(result, markovianStates, vAllMarkovian); return result; } else { // Create the result vector out of 1_G, vProbabilistic and vMarkovian and return it. std::vector<ValueType> result(numberOfStates); storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>()); storm::utility::vector::setVectorValues(result, probabilisticNonGoalStates, vProbabilistic); storm::utility::vector::setVectorValues(result, markovianNonGoalStates, vMarkovian); return result; } } template<typename ValueType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { return std::move(storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(dir, transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, false, minMaxLinearEquationSolverFactory).values); } template <typename ValueType> template <typename RewardModelType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix.getRowCount(), transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true)); return computeExpectedRewards(dir, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, totalRewardVector, minMaxLinearEquationSolverFactory); } template<typename ValueType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); // If there are no goal states, we avoid the computation and directly return zero. if (psiStates.empty()) { return std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>()); } // Likewise, if all bits are set, we can avoid the computation and set. if ((~psiStates).empty()) { return std::vector<ValueType>(numberOfStates, storm::utility::one<ValueType>()); } // Start by decomposing the Markov automaton into its MECs. storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(transitionMatrix, backwardTransitions); // Get some data members for convenience. std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); // Now start with compute the long-run average for all end components in isolation. std::vector<ValueType> lraValuesForEndComponents; // While doing so, we already gather some information for the following steps. std::vector<uint_fast64_t> stateToMecIndexMap(numberOfStates); storm::storage::BitVector statesInMecs(numberOfStates); for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; // Gather information for later use. for (auto const& stateChoicesPair : mec) { uint_fast64_t state = stateChoicesPair.first; statesInMecs.set(state); stateToMecIndexMap[state] = currentMecIndex; } // Compute the LRA value for the current MEC. lraValuesForEndComponents.push_back(computeLraForMaximalEndComponent(dir, transitionMatrix, exitRateVector, markovianStates, psiStates, mec)); } // For fast transition rewriting, we build some auxiliary data structures. storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); uint_fast64_t lastStateNotInMecs = 0; uint_fast64_t numberOfStatesNotInMecs = 0; std::vector<uint_fast64_t> statesNotInMecsBeforeIndex; statesNotInMecsBeforeIndex.reserve(numberOfStates); for (auto state : statesNotContainedInAnyMec) { while (lastStateNotInMecs <= state) { statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs); ++lastStateNotInMecs; } ++numberOfStatesNotInMecs; } // Finally, we are ready to create the SSP matrix and right-hand side of the SSP. std::vector<ValueType> b; typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); // If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications). uint_fast64_t currentChoice = 0; for (auto state : statesNotContainedInAnyMec) { sspMatrixBuilder.newRowGroup(currentChoice); for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); b.push_back(storm::utility::zero<ValueType>()); for (auto element : transitionMatrix.getRow(choice)) { if (statesNotContainedInAnyMec.get(element.getColumn())) { // If the target state is not contained in an MEC, we can copy over the entry. sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); } else { // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector // so that we are able to write the cumulative probability to the MEC into the matrix. auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); } } // Now insert all (cumulative) probability values that target an MEC. for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); } } } } // Now we are ready to construct the choices for the auxiliary states. for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; sspMatrixBuilder.newRowGroup(currentChoice); for (auto const& stateChoicesPair : mec) { uint_fast64_t state = stateChoicesPair.first; boost::container::flat_set<uint_fast64_t> const& choicesInMec = stateChoicesPair.second; for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); // If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state. if (choicesInMec.find(choice) == choicesInMec.end()) { b.push_back(storm::utility::zero<ValueType>()); for (auto element : transitionMatrix.getRow(choice)) { if (statesNotContainedInAnyMec.get(element.getColumn())) { // If the target state is not contained in an MEC, we can copy over the entry. sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); } else { // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector // so that we are able to write the cumulative probability to the MEC into the matrix. auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); } } // Now insert all (cumulative) probability values that target an MEC. for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); } } ++currentChoice; } } } // For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC. ++currentChoice; b.push_back(lraValuesForEndComponents[mecIndex]); } // Finalize the matrix and solve the corresponding system of equations. storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice); std::vector<ValueType> x(numberOfStatesNotInMecs + mecDecomposition.size()); std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(sspMatrix); solver->solveEquationSystem(dir, x, b); // Prepare result vector. std::vector<ValueType> result(numberOfStates); // Set the values for states not contained in MECs. storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, x); // Set the values for all states in MECs. for (auto state : statesInMecs) { result[state] = x[firstAuxiliaryStateIndex + stateToMecIndexMap[state]]; } return result; } template <typename ValueType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeTimes(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); std::vector<ValueType> rewardValues(numberOfStates, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues(rewardValues, markovianStates, storm::utility::one<ValueType>()); return computeExpectedRewards(dir, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, rewardValues, minMaxLinearEquationSolverFactory); } template <typename ValueType> std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeExpectedRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); // First, we need to check which states have infinite expected time (by definition). storm::storage::BitVector infinityStates; if (dir ==OptimizationDirection::Minimize) { // If we need to compute the minimum expected times, we have to set the values of those states to infinity that, under all schedulers, // reach a bottom SCC without a goal state. // So we start by computing all bottom SCCs without goal states. storm::storage::StronglyConnectedComponentDecomposition<double> sccDecomposition(transitionMatrix, ~goalStates, true, true); // Now form the union of all these SCCs. storm::storage::BitVector unionOfNonGoalBSccs(numberOfStates); for (auto const& scc : sccDecomposition) { for (auto state : scc) { unionOfNonGoalBSccs.set(state); } } // Finally, if this union is non-empty, compute the states such that all schedulers reach some state of the union. if (!unionOfNonGoalBSccs.empty()) { infinityStates = storm::utility::graph::performProbGreater0A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, storm::storage::BitVector(numberOfStates, true), unionOfNonGoalBSccs); } else { // Otherwise, we have no infinity states. infinityStates = storm::storage::BitVector(numberOfStates); } } else { // If we maximize the property, the expected time of a state is infinite, if an end-component without any goal state is reachable. // So we start by computing all MECs that have no goal state. storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(transitionMatrix, backwardTransitions, ~goalStates); // Now we form the union of all states in these end components. storm::storage::BitVector unionOfNonGoalMaximalEndComponents(numberOfStates); for (auto const& mec : mecDecomposition) { for (auto const& stateActionPair : mec) { unionOfNonGoalMaximalEndComponents.set(stateActionPair.first); } } if (!unionOfNonGoalMaximalEndComponents.empty()) { // Now we need to check for which states there exists a scheduler that reaches one of the previously computed states. infinityStates = storm::utility::graph::performProbGreater0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, storm::storage::BitVector(numberOfStates, true), unionOfNonGoalMaximalEndComponents); } else { // Otherwise, we have no infinity states. infinityStates = storm::storage::BitVector(numberOfStates); } } // Now we identify the states for which values need to be computed. storm::storage::BitVector maybeStates = ~(goalStates | infinityStates); // Create resulting vector. std::vector<ValueType> result(numberOfStates); if (!maybeStates.empty()) { // Then, we can eliminate the rows and columns for all states whose values are already known. std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates); // Now prepare the expected reward values for all states so they can be used as the right-hand side of the equation system. std::vector<ValueType> rewardValues(stateRewards); for (auto state : markovianStates) { rewardValues[state] = rewardValues[state] / exitRateVector[state]; } // Finally, prepare the actual right-hand side. std::vector<ValueType> b(submatrix.getRowCount()); storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, transitionMatrix.getRowGroupIndices(), rewardValues); // Solve the corresponding system of equations. std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(submatrix); solver->solveEquationSystem(dir, x, b); // Set values of resulting vector according to previous result and return the result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } storm::utility::vector::setVectorValues(result, goalStates, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); return result; } template<typename ValueType> ValueType SparseMarkovAutomatonCslHelper<ValueType>::computeLraForMaximalEndComponent(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec) { std::unique_ptr<storm::utility::solver::LpSolverFactory> lpSolverFactory(new storm::utility::solver::LpSolverFactory()); std::unique_ptr<storm::solver::LpSolver> solver = lpSolverFactory->create("LRA for MEC"); solver->setOptimizationDirection(invert(dir)); // First, we need to create the variables for the problem. std::map<uint_fast64_t, storm::expressions::Variable> stateToVariableMap; for (auto const& stateChoicesPair : mec) { std::string variableName = "x" + std::to_string(stateChoicesPair.first); stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); } storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", 1); solver->update(); // Now we encode the problem as constraints. std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); for (auto const& stateChoicesPair : mec) { uint_fast64_t state = stateChoicesPair.first; // Now, based on the type of the state, create a suitable constraint. if (markovianStates.get(state)) { storm::expressions::Expression constraint = stateToVariableMap.at(state); for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) { constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); } constraint = constraint + solver->getConstant(storm::utility::one<ValueType>() / exitRateVector[state]) * k; storm::expressions::Expression rightHandSide = goalStates.get(state) ? solver->getConstant(storm::utility::one<ValueType>() / exitRateVector[state]) : solver->getConstant(0); if (dir == OptimizationDirection::Minimize) { constraint = constraint <= rightHandSide; } else { constraint = constraint >= rightHandSide; } solver->addConstraint("state" + std::to_string(state), constraint); } else { // For probabilistic states, we want to add the constraint x_s <= sum P(s, a, s') * x_s' where a is the current action // and the sum ranges over all states s'. for (auto choice : stateChoicesPair.second) { storm::expressions::Expression constraint = stateToVariableMap.at(state); for (auto element : transitionMatrix.getRow(choice)) { constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); } storm::expressions::Expression rightHandSide = solver->getConstant(storm::utility::zero<ValueType>()); if (dir == OptimizationDirection::Minimize) { constraint = constraint <= rightHandSide; } else { constraint = constraint >= rightHandSide; } solver->addConstraint("state" + std::to_string(state), constraint); } } } solver->optimize(); return solver->getContinuousValue(k); } template class SparseMarkovAutomatonCslHelper<double>; template std::vector<double> SparseMarkovAutomatonCslHelper<double>::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<double> const& minMaxLinearEquationSolverFactory); } } }