#include <cuda.h> #include <stdlib.h> #include <stdio.h> #include <chrono> #include <iostream> __global__ void cuda_kernel_basicAdd(int a, int b, int *c) { *c = a + b; } __global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) { // Fused Multiply Add: // A * B + C => D /* *Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd *ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche *Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente *des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des *Threads, der die Funktion gerade ausführt. */ int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < N) { D[i] = A[i] * B[i] + C[i]; } } __global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) { // Fused Multiply Add: // A * B + C => D // Layout: // A B C D A B C D A B C D int i = blockDim.x * blockIdx.x + threadIdx.x; if ((i*M) < N) { for (int j = i*M; j < i*M + M; ++j) { A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2]; } } } extern "C" int cuda_basicAdd(int a, int b) { int c = 0; int *dev_c; cudaMalloc((void**)&dev_c, sizeof(int)); cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c); cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost); //printf("%d + %d + 42 is %d\n", a, b, c); cudaFree(dev_c); return c; } void cpp_cuda_bandwidthTest(int entryCount, int N) { // Size of the Arrays size_t arraySize = entryCount * sizeof(int); int* deviceIntArray; int* hostIntArray = new int[arraySize]; // Allocate space on the device auto start_time = std::chrono::high_resolution_clock::now(); for (int i = 0; i < N; ++i) { if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) { std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl; delete[] hostIntArray; return; } // Free memory on device if (cudaFree(deviceIntArray) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; delete[] hostIntArray; return; } } auto end_time = std::chrono::high_resolution_clock::now(); auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count(); double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625; std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl; std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl; if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) { std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl; delete[] hostIntArray; return; } // Prepare data for (int i = 0; i < N; ++i) { hostIntArray[i] = i * 333 + 123; } // Copy data TO device start_time = std::chrono::high_resolution_clock::now(); for (int i = 0; i < N; ++i) { if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) { std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl; // Free memory on device if (cudaFree(deviceIntArray) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; } delete[] hostIntArray; return; } } end_time = std::chrono::high_resolution_clock::now(); copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count(); mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625; std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl; std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl; // Copy data FROM device start_time = std::chrono::high_resolution_clock::now(); for (int i = 0; i < N; ++i) { if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) { std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl; // Free memory on device if (cudaFree(deviceIntArray) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; } delete[] hostIntArray; return; } } end_time = std::chrono::high_resolution_clock::now(); copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count(); mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625; std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl; std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl; // Free memory on device if (cudaFree(deviceIntArray) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; } delete[] hostIntArray; } extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) { // Size of the Arrays size_t arraySize = N * sizeof(int); int* deviceIntArrayA; int* deviceIntArrayB; int* deviceIntArrayC; int* deviceIntArrayD; // Allocate space on the device if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) { printf("Error in cudaMalloc1!\n"); return; } if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) { printf("Error in cudaMalloc2!\n"); cudaFree(deviceIntArrayA); return; } if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) { printf("Error in cudaMalloc3!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); return; } if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) { printf("Error in cudaMalloc4!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); return; } // Copy data TO device if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); cudaFree(deviceIntArrayD); return; } if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); cudaFree(deviceIntArrayD); return; } if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); cudaFree(deviceIntArrayD); return; } // Festlegung der Threads pro Block int threadsPerBlock = 512; // Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; // Run kernel cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N); // Copy data FROM device if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); cudaFree(deviceIntArrayD); return; } // Free memory on device cudaFree(deviceIntArrayA); cudaFree(deviceIntArrayB); cudaFree(deviceIntArrayC); cudaFree(deviceIntArrayD); } extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) { // Size of the Arrays size_t arraySize = N * sizeof(int) * 4; int* deviceIntArrayA; // Allocate space on the device if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) { printf("Error in cudaMalloc1!\n"); return; } #define ONFAILFREE0() do { } while(0) #define ONFAILFREE1(a) do { cudaFree(a); } while(0) #define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0) #define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0) #define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0) #define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0) // Copy data TO device CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice); /*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); return; }*/ // Festlegung der Threads pro Block int threadsPerBlock = 512; // Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; // Run kernel cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M); // Copy data FROM device if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) { printf("Error in cudaMemcpy!\n"); cudaFree(deviceIntArrayA); return; } // Free memory on device if (cudaFree(deviceIntArrayA) != cudaSuccess) { printf("Error in cudaFree!\n"); return; } } extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) { for (int i = 0; i < N; ++i) { D[i] = A[i] * B[i] + C[i]; } } extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) { for (int i = 0; i < N; i += 4) { A[i+3] = A[i] * A[i+1] + A[i+2]; } }