#include "graph.h"
#include "utility/OsDetection.h"
#include "storm-config.h"

#include "storm/adapters/RationalFunctionAdapter.h"

#include "storm/storage/sparse/StateType.h"
#include "storm/storage/dd/Bdd.h"
#include "storm/storage/dd/Add.h"
#include "storm/storage/dd/DdManager.h"

#include "storm/abstraction/ExplicitGameStrategyPair.h"
#include "storm/storage/StronglyConnectedComponentDecomposition.h"

#include "storm/models/symbolic/DeterministicModel.h"
#include "storm/models/symbolic/NondeterministicModel.h"
#include "storm/models/symbolic/StandardRewardModel.h"
#include "storm/models/symbolic/StochasticTwoPlayerGame.h"
#include "storm/models/sparse/DeterministicModel.h"
#include "storm/models/sparse/NondeterministicModel.h"
#include "storm/models/sparse/StandardRewardModel.h"

#include "storm/utility/constants.h"
#include "storm/utility/macros.h"
#include "storm/exceptions/InvalidArgumentException.h"

#include <queue>

namespace storm {
    namespace utility {
        namespace graph {
            
            template<typename T>
            storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates, bool useStepBound, uint_fast64_t maximalSteps, boost::optional<storm::storage::BitVector> const& choiceFilter) {
                storm::storage::BitVector reachableStates(initialStates);
                
                uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
                
                // Initialize the stack used for the DFS with the states.
                std::vector<uint_fast64_t> stack;
                stack.reserve(initialStates.size());
                for (auto const& state : initialStates) {
                    if (constraintStates.get(state)) {
                        stack.push_back(state);
                    }
                }
                
                // Initialize the stack for the step bound, if the number of steps is bounded.
                std::vector<uint_fast64_t> stepStack;
                std::vector<uint_fast64_t> remainingSteps;
                if (useStepBound) {
                    stepStack.reserve(numberOfStates);
                    stepStack.insert(stepStack.begin(), stack.size(), maximalSteps);
                    remainingSteps.resize(numberOfStates);
                    for (auto state : stack) {
                        remainingSteps[state] = maximalSteps;
                    }
                }
                
                // Perform the actual DFS.
                uint_fast64_t currentState = 0, currentStepBound = 0;
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    if (useStepBound) {
                        currentStepBound = stepStack.back();
                        stepStack.pop_back();
                        
                        if (currentStepBound == 0) {
                            continue;
                        }
                    }
                    
                    
                    uint64_t row = transitionMatrix.getRowGroupIndices()[currentState];
                    if (choiceFilter) {
                        row = choiceFilter->getNextSetIndex(row);
                    }
                    uint64_t const rowGroupEnd = transitionMatrix.getRowGroupIndices()[currentState + 1];
                    while (row < rowGroupEnd) {
                        for (auto const& successor : transitionMatrix.getRow(row)) {
                            // Only explore the state if the transition was actually there and the successor has not yet
                            // been visited.
                            if (!storm::utility::isZero(successor.getValue()) && (!reachableStates.get(successor.getColumn()) || (useStepBound && remainingSteps[successor.getColumn()] < currentStepBound - 1))) {
                                // If the successor is one of the target states, we need to include it, but must not explore
                                // it further.
                                if (targetStates.get(successor.getColumn())) {
                                    reachableStates.set(successor.getColumn());
                                } else if (constraintStates.get(successor.getColumn())) {
                                    // However, if the state is in the constrained set of states, we potentially need to follow it.
                                    if (useStepBound) {
                                        // As there is at least one more step to go, we need to push the state and the new number of steps.
                                        remainingSteps[successor.getColumn()] = currentStepBound - 1;
                                        stepStack.push_back(currentStepBound - 1);
                                    }
                                    reachableStates.set(successor.getColumn());
                                    stack.push_back(successor.getColumn());
                                }
                            }
                        }
                        ++row;
                        if (choiceFilter) {
                            row = choiceFilter->getNextSetIndex(row);
                        }
                    }
                }
                
                return reachableStates;
            }
            
            template<typename T>
            storm::storage::BitVector getBsccCover(storm::storage::SparseMatrix<T> const& transitionMatrix) {
                storm::storage::BitVector result(transitionMatrix.getRowGroupCount());
                storm::storage::StronglyConnectedComponentDecomposition<T> decomposition(transitionMatrix, storm::storage::StronglyConnectedComponentDecompositionOptions().onlyBottomSccs());
                
                // Take the first state out of each BSCC.
                for (auto const& scc : decomposition) {
                    result.set(*scc.begin());
                }
                
                return result;
            }
            
            template <typename T>
            bool hasCycle(storm::storage::SparseMatrix<T> const& transitionMatrix, boost::optional<storm::storage::BitVector> const& subsystem) {
                storm::storage::BitVector unexploredStates; // States that have not been visited yet
                storm::storage::BitVector acyclicStates; // States that are known to not lie on a cycle consisting of subsystem states
                if (subsystem) {
                    unexploredStates = subsystem.get();
                    acyclicStates = ~subsystem.get();
                } else {
                    unexploredStates.resize(transitionMatrix.getRowGroupCount(), true);
                    acyclicStates.resize(transitionMatrix.getRowGroupCount(), false);
                }
                std::vector<uint64_t> dfsStack;
                for (uint64_t start = unexploredStates.getNextSetIndex(0); start < unexploredStates.size(); start = unexploredStates.getNextSetIndex(start + 1)) {
                    dfsStack.push_back(start);
                    while (!dfsStack.empty()) {
                        uint64_t state = dfsStack.back();
                        if (unexploredStates.get(state)) {
                            unexploredStates.set(state, false);
                            for (auto const& entry : transitionMatrix.getRowGroup(state)) {
                                if (unexploredStates.get(entry.getColumn())) {
                                    dfsStack.push_back(entry.getColumn());
                                } else {
                                    if (!acyclicStates.get(entry.getColumn())) {
                                        // The state has been visited before but is not known to be acyclic.
                                        return true;
                                    }
                                }
                            }
                        } else {
                            acyclicStates.set(state, true);
                            dfsStack.pop_back();
                        }
                    }
                }
                return false;
            }
            
            template <typename T>
            bool checkIfECWithChoiceExists(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& choices) {
                
                STORM_LOG_THROW(subsystem.size() == transitionMatrix.getRowGroupCount(), storm::exceptions::InvalidArgumentException, "Invalid size of subsystem");
                STORM_LOG_THROW(choices.size() == transitionMatrix.getRowCount(), storm::exceptions::InvalidArgumentException, "Invalid size of choice vector");
                
                if (subsystem.empty() || choices.empty()) {
                    return false;
                }
                
                storm::storage::BitVector statesWithChoice(transitionMatrix.getRowGroupCount(), false);
                uint_fast64_t state = 0;
                for (auto const& choice : choices) {
                    // Get the correct state
                    while (choice >= transitionMatrix.getRowGroupIndices()[state + 1]) {
                        ++state;
                    }
                    assert(choice >= transitionMatrix.getRowGroupIndices()[state]);
                    // make sure that the choice originates from the subsystem and also stays within the subsystem
                    if (subsystem.get(state)) {
                        bool choiceStaysInSubsys = true;
                        for (auto const& entry : transitionMatrix.getRow(choice)) {
                            if (!subsystem.get(entry.getColumn())) {
                                choiceStaysInSubsys = false;
                                break;
                            }
                        }
                        if (choiceStaysInSubsys) {
                            statesWithChoice.set(state, true);
                        }
                    }
                }
                
                // Initialize candidate states that satisfy some necessary conditions for being part of an EC with a specified choice:
                
                // Get the states for which a policy can enforce that a choice is reached while staying inside the subsystem
                storm::storage::BitVector candidateStates = storm::utility::graph::performProb1E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, subsystem, statesWithChoice);
                
                // Only keep the states that can stay in the set of candidates forever
                candidateStates = storm::utility::graph::performProb0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, candidateStates, ~candidateStates);
                
                // Only keep the states that can be reached after performing one of the specified choices
                statesWithChoice &= candidateStates;
                storm::storage::BitVector choiceTargets(transitionMatrix.getRowGroupCount(), false);
                for (auto const& state : statesWithChoice) {
                    for (uint_fast64_t choice = choices.getNextSetIndex(transitionMatrix.getRowGroupIndices()[state]); choice < transitionMatrix.getRowGroupIndices()[state + 1]; choice = choices.getNextSetIndex(choice + 1)) {
                        bool choiceStaysInCandidateSet = true;
                        for (auto const& entry : transitionMatrix.getRow(choice)) {
                            if (!candidateStates.get(entry.getColumn())) {
                                choiceStaysInCandidateSet = false;
                                break;
                            }
                        }
                        if (choiceStaysInCandidateSet) {
                            for (auto const& entry : transitionMatrix.getRow(choice)) {
                                choiceTargets.set(entry.getColumn(), true);
                            }
                        }
                    }
                }
                candidateStates = storm::utility::graph::getReachableStates(transitionMatrix, choiceTargets, candidateStates, storm::storage::BitVector(candidateStates.size(), false));
                
                // At this point we know that every candidate state can reach a state with a choice without leaving the set of candidate states.
                // We now compute the states that can reach a choice at least twice, three times, four times, ... until a fixpoint is reached.
                while (!candidateStates.empty()) {
                    // Update the states with a choice that stays within the set of candidates
                    statesWithChoice &= candidateStates;
                    for (auto const& state : statesWithChoice) {
                        bool stateHasChoice = false;
                        for (uint_fast64_t choice = choices.getNextSetIndex(transitionMatrix.getRowGroupIndices()[state]); choice < transitionMatrix.getRowGroupIndices()[state + 1]; choice = choices.getNextSetIndex(choice + 1)) {
                            bool choiceStaysInCandidateSet = true;
                            for (auto const& entry : transitionMatrix.getRow(choice)) {
                                if (!candidateStates.get(entry.getColumn())) {
                                    choiceStaysInCandidateSet = false;
                                    break;
                                }
                            }
                            if (choiceStaysInCandidateSet) {
                                stateHasChoice = true;
                                break;
                            }
                        }
                        if (!stateHasChoice) {
                            statesWithChoice.set(state, false);
                        }
                    }
                   
                    // Update the candidates
                    storm::storage::BitVector newCandidates = storm::utility::graph::performProb1E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, candidateStates, statesWithChoice);
                    
                    // Check if converged
                    if (newCandidates == candidateStates) {
                        assert(!candidateStates.empty());
                        return true;
                    }
                    candidateStates = std::move(newCandidates);
                }
                return false;
            }

            
            template<typename T>
            std::vector<uint_fast64_t> getDistances(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates, boost::optional<storm::storage::BitVector> const& subsystem) {
                std::vector<uint_fast64_t> distances(transitionMatrix.getRowGroupCount());
                
                std::vector<std::pair<storm::storage::sparse::state_type, uint_fast64_t>> stateQueue;
                stateQueue.reserve(transitionMatrix.getRowGroupCount());
                storm::storage::BitVector statesInQueue(transitionMatrix.getRowGroupCount());
                
                storm::storage::sparse::state_type currentPosition = 0;
                for (auto const& initialState : initialStates) {
                    stateQueue.emplace_back(initialState, 0);
                    statesInQueue.set(initialState);
                }
                
                // Perform a BFS.
                while (currentPosition < stateQueue.size()) {
                    std::pair<storm::storage::sparse::state_type, std::size_t> const& stateDistancePair = stateQueue[currentPosition];
                    distances[stateDistancePair.first] = stateDistancePair.second;
                    
                    for (auto const& successorEntry : transitionMatrix.getRowGroup(stateDistancePair.first)) {
                        if (!statesInQueue.get(successorEntry.getColumn())) {
                            if (!subsystem || subsystem.get()[successorEntry.getColumn()]) {
                                stateQueue.emplace_back(successorEntry.getColumn(), stateDistancePair.second + 1);
                                statesInQueue.set(successorEntry.getColumn());
                            }
                        }
                    }
                    ++currentPosition;
                }
                
                return distances;
            }
            
            template <typename T>
            storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound, uint_fast64_t maximalSteps) {
                // Prepare the resulting bit vector.
                uint_fast64_t numberOfStates = phiStates.size();
                storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
                
                // Add all psi states as they already satisfy the condition.
                statesWithProbabilityGreater0 |= psiStates;
                
                // Initialize the stack used for the DFS with the states.
                std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
                
                // Initialize the stack for the step bound, if the number of steps is bounded.
                std::vector<uint_fast64_t> stepStack;
                std::vector<uint_fast64_t> remainingSteps;
                if (useStepBound) {
                    stepStack.reserve(numberOfStates);
                    stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
                    remainingSteps.resize(numberOfStates);
                    for (auto state : psiStates) {
                        remainingSteps[state] = maximalSteps;
                    }
                }
                
                // Perform the actual DFS.
                uint_fast64_t currentState, currentStepBound;
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    if (useStepBound) {
                        currentStepBound = stepStack.back();
                        stepStack.pop_back();
                        if(currentStepBound == 0) {
                            continue;
                        }
                        
                    }
                    
                    for (typename storm::storage::SparseMatrix<T>::const_iterator entryIt = backwardTransitions.begin(currentState), entryIte = backwardTransitions.end(currentState); entryIt != entryIte; ++entryIt) {
                        if (phiStates[entryIt->getColumn()] && (!statesWithProbabilityGreater0.get(entryIt->getColumn()) || (useStepBound && remainingSteps[entryIt->getColumn()] < currentStepBound - 1))) {
                            statesWithProbabilityGreater0.set(entryIt->getColumn(), true);

                            // If we don't have a bound on the number of steps to take, just add the state to the stack.
                            if (useStepBound) {
                                // As there is at least one more step to go, we need to push the state and the new number of steps.
                                remainingSteps[entryIt->getColumn()] = currentStepBound - 1;
                                stepStack.push_back(currentStepBound - 1);
                            }
                            stack.push_back(entryIt->getColumn());
                        }
                    }
                }
                
                // Return result.
                return statesWithProbabilityGreater0;
            }
            
            template <typename T>
            storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const&, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0) {
                storm::storage::BitVector statesWithProbability1 = performProbGreater0(backwardTransitions, ~psiStates, ~statesWithProbabilityGreater0);
                statesWithProbability1.complement();
                return statesWithProbability1;
            }
            
            template <typename T>
            storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                storm::storage::BitVector statesWithProbabilityGreater0 = performProbGreater0(backwardTransitions, phiStates, psiStates);
                storm::storage::BitVector statesWithProbability1 = performProbGreater0(backwardTransitions, ~psiStates, ~(statesWithProbabilityGreater0));
                statesWithProbability1.complement();
                return statesWithProbability1;
            }
            
            template <typename T>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
                storm::storage::SparseMatrix<T> backwardTransitions = model.getBackwardTransitions();
                result.first = performProbGreater0(backwardTransitions, phiStates, psiStates);
                result.second = performProb1(backwardTransitions, phiStates, psiStates, result.first);
                result.first.complement();
                return result;
            }
            
            template <typename T>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
                result.first = performProbGreater0(backwardTransitions, phiStates, psiStates);
                result.second = performProb1(backwardTransitions, phiStates, psiStates, result.first);
                result.first.complement();
                return result;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProbGreater0(storm::models::symbolic::Model<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, boost::optional<uint_fast64_t> const& stepBound) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
                storm::dd::Bdd<Type> statesWithProbabilityGreater0 = psiStates;
                
                uint_fast64_t iterations = 0;
                while (lastIterationStates != statesWithProbabilityGreater0) {
                    if (stepBound && iterations >= stepBound.get()) {
                        break;
                    }
                    
                    lastIterationStates = statesWithProbabilityGreater0;
                    statesWithProbabilityGreater0 = statesWithProbabilityGreater0.inverseRelationalProduct(transitionMatrix, model.getRowVariables(), model.getColumnVariables());
                    statesWithProbabilityGreater0 &= phiStates;
                    statesWithProbabilityGreater0 |= lastIterationStates;
                    ++iterations;
                }
                
                return statesWithProbabilityGreater0;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const&, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0) {
                storm::dd::Bdd<Type> statesWithProbability1 = performProbGreater0(model, transitionMatrix, !psiStates && model.getReachableStates(), !statesWithProbabilityGreater0 && model.getReachableStates());
                statesWithProbability1 = !statesWithProbability1 && model.getReachableStates();
                return statesWithProbability1;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                storm::dd::Bdd<Type> statesWithProbabilityGreater0 = performProbGreater0(model, transitionMatrix, phiStates, psiStates);
                return performProb1(model, transitionMatrix, phiStates, psiStates, statesWithProbabilityGreater0);
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::DeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
                storm::dd::Bdd<Type> transitionMatrix = model.getTransitionMatrix().notZero();
                result.first = performProbGreater0(model, transitionMatrix, phiStates, psiStates);
                result.second = !performProbGreater0(model, transitionMatrix, !psiStates && model.getReachableStates(), !result.first && model.getReachableStates()) && model.getReachableStates();
                result.first = !result.first && model.getReachableStates();
                return result;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::Model<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
                result.first = performProbGreater0(model, transitionMatrix, phiStates, psiStates);
                result.second = !performProbGreater0(model, transitionMatrix, !psiStates && model.getReachableStates(), !result.first && model.getReachableStates()) && model.getReachableStates();
                result.first = !result.first && model.getReachableStates();
                return result;
            }
            
            template <typename T>
            void computeSchedulerStayingInStates(storm::storage::BitVector const& states, storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::Scheduler<T>& scheduler) {
                std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
                
                for (auto const& state : states) {
                    bool setValue = false;
                    STORM_LOG_ASSERT(nondeterministicChoiceIndices[state+1] - nondeterministicChoiceIndices[state] > 0, "Expected at least one action enabled in state " << state);
                    for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
                        bool allSuccessorsInStates = true;
                        for (auto const& element : transitionMatrix.getRow(choice)) {
                            if (!states.get(element.getColumn())) {
                                allSuccessorsInStates = false;
                                break;
                            }
                        }
                        if (allSuccessorsInStates) {
                            for (uint_fast64_t memState = 0; memState < scheduler.getNumberOfMemoryStates(); ++memState) {
                                scheduler.setChoice(choice - nondeterministicChoiceIndices[state], state, memState);
                            }
                            setValue = true;
                            break;
                        }
                    }
                    STORM_LOG_ASSERT(setValue, "Expected that at least one action for state " <<  state << " stays within the selected state");
                }
            }
            
            template <typename T>
            void computeSchedulerWithOneSuccessorInStates(storm::storage::BitVector const& states, storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::Scheduler<T>& scheduler) {
                std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
                
                for (auto const& state : states) {
                    bool setValue = false;
                    for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
                        bool oneSuccessorInStates = false;
                        for (auto const& element : transitionMatrix.getRow(choice)) {
                            if (states.get(element.getColumn())) {
                                oneSuccessorInStates = true;
                                break;
                            }
                        }
                        if (oneSuccessorInStates) {
                            for (uint_fast64_t memState = 0; memState < scheduler.getNumberOfMemoryStates(); ++memState) {
                                scheduler.setChoice(choice - nondeterministicChoiceIndices[state], state, memState);
                            }
                            setValue = true;
                            break;
                        }
                    }
                    STORM_LOG_ASSERT(setValue, "Expected that at least one action for state " <<  state << " leads with positive probability to the selected state");
                }
            }
            
            template <typename T>
            void computeSchedulerProbGreater0E(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<T>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter) {
                //Perform backwards DFS from psiStates and find a valid choice for each visited state.
                
                std::vector<uint_fast64_t> stack;
                storm::storage::BitVector currentStates(psiStates); //the states that are either psiStates or for which we have found a valid choice.
                stack.insert(stack.end(), currentStates.begin(), currentStates.end());
                uint_fast64_t currentState = 0;
                
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    for (typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
                        uint_fast64_t const& predecessor = predecessorEntryIt->getColumn();
                        if (phiStates.get(predecessor) && !currentStates.get(predecessor)) {
                            //The predecessor is a probGreater0E state that has not been considered yet. Let's find the right choice that leads to a state in currentStates.
                            bool foundValidChoice = false;
                            for (uint_fast64_t row = transitionMatrix.getRowGroupIndices()[predecessor]; row < transitionMatrix.getRowGroupIndices()[predecessor + 1]; ++row) {
                                if(rowFilter && !rowFilter->get(row)){
                                    continue;
                                }
                                for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
                                    if(currentStates.get(successorEntryIt->getColumn())){
                                        foundValidChoice = true;
                                        break;
                                    }
                                }
                                if(foundValidChoice){
                                    for (uint_fast64_t memState = 0; memState < scheduler.getNumberOfMemoryStates(); ++memState) {
                                        scheduler.setChoice(row - transitionMatrix.getRowGroupIndices()[predecessor], predecessor, memState);
                                    }
                                    currentStates.set(predecessor, true);
                                    stack.push_back(predecessor);
                                    break;
                                }
                            }
                            STORM_LOG_INFO_COND(foundValidChoice, "Could not find a valid choice for ProbGreater0E state " << predecessor << ".");
                        }
                    }
                }
            }
            
            template <typename T>
            void computeSchedulerProb0E(storm::storage::BitVector const& prob0EStates, storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::Scheduler<T>& scheduler) {
                computeSchedulerStayingInStates(prob0EStates, transitionMatrix, scheduler);
            }

            template <typename T>
            void computeSchedulerRewInf(storm::storage::BitVector const& rewInfStates, storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::Scheduler<T>& scheduler) {
                computeSchedulerWithOneSuccessorInStates(rewInfStates, transitionMatrix, scheduler);
            }
            
            template <typename T>
            void computeSchedulerProb1E(storm::storage::BitVector const& prob1EStates, storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<T>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter) {
                
                // set an arbitrary (valid) choice for the psi states.
                for (auto const& psiState : psiStates) {
                    for (uint_fast64_t memState = 0; memState < scheduler.getNumberOfMemoryStates(); ++memState) {
                        if (!scheduler.getChoice(psiState, memState).isDefined()) {
                            scheduler.setChoice(0, psiState, memState);
                        }
                    }
                }
                
                // Now perform a backwards search from the psi states and store choices with prob. 1
                std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
                std::vector<uint_fast64_t> stack;
                storm::storage::BitVector currentStates(psiStates);
                stack.insert(stack.end(), currentStates.begin(), currentStates.end());
                uint_fast64_t currentState = 0;
                
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    for (typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
                        if (phiStates.get(predecessorEntryIt->getColumn()) && !currentStates.get(predecessorEntryIt->getColumn())) {
                            // Check whether the predecessor has only successors in the prob1E state set for one of the
                            // nondeterminstic choices.
                            for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
                                if (!rowFilter || rowFilter.get().get(row)) {
                                    bool allSuccessorsInProb1EStates = true;
                                    bool hasSuccessorInCurrentStates = false;
                                    for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
                                        if (!prob1EStates.get(successorEntryIt->getColumn())) {
                                            allSuccessorsInProb1EStates = false;
                                            break;
                                        } else if (currentStates.get(successorEntryIt->getColumn())) {
                                            hasSuccessorInCurrentStates = true;
                                        }
                                    }
                                    
                                    // If all successors for a given nondeterministic choice are in the prob1E state set, we
                                    // perform a backward search from that state.
                                    if (allSuccessorsInProb1EStates && hasSuccessorInCurrentStates) {
                                        for (uint_fast64_t memState = 0; memState < scheduler.getNumberOfMemoryStates(); ++memState) {
                                            scheduler.setChoice(row - nondeterministicChoiceIndices[predecessorEntryIt->getColumn()], predecessorEntryIt->getColumn(), memState);
                                        }
                                        currentStates.set(predecessorEntryIt->getColumn(), true);
                                        stack.push_back(predecessorEntryIt->getColumn());
                                        break;
                                    }
                                }
                            }
                        }
                    }
                }
            }
            
            template <typename T>
            storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound, uint_fast64_t maximalSteps) {
                size_t numberOfStates = phiStates.size();
                
                // Prepare resulting bit vector.
                storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
                
                // Add all psi states as the already satisfy the condition.
                statesWithProbabilityGreater0 |= psiStates;
                
                // Initialize the stack used for the DFS with the states
                std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
                
                // Initialize the stack for the step bound, if the number of steps is bounded.
                std::vector<uint_fast64_t> stepStack;
                std::vector<uint_fast64_t> remainingSteps;
                if (useStepBound) {
                    stepStack.reserve(numberOfStates);
                    stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
                    remainingSteps.resize(numberOfStates);
                    for (auto state : psiStates) {
                        remainingSteps[state] = maximalSteps;
                    }
                }
                
                // Perform the actual DFS.
                uint_fast64_t currentState, currentStepBound;
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    if (useStepBound) {
                        currentStepBound = stepStack.back();
                        stepStack.pop_back();
                        if (currentStepBound == 0) {
                            continue;
                        }
                    }
                    
                    for (typename storm::storage::SparseMatrix<T>::const_iterator entryIt = backwardTransitions.begin(currentState), entryIte = backwardTransitions.end(currentState); entryIt != entryIte; ++entryIt) {
                        if (phiStates.get(entryIt->getColumn()) && (!statesWithProbabilityGreater0.get(entryIt->getColumn()) || (useStepBound && remainingSteps[entryIt->getColumn()] < currentStepBound - 1))) {
                            // If we don't have a bound on the number of steps to take, just add the state to the stack.
                            if (useStepBound) {
                                // If there is at least one more step to go, we need to push the state and the new number of steps.
                                remainingSteps[entryIt->getColumn()] = currentStepBound - 1;
                                stepStack.push_back(currentStepBound - 1);
                            }
                            statesWithProbabilityGreater0.set(entryIt->getColumn(), true);
                            stack.push_back(entryIt->getColumn());
                        }
                    }
                }
                
                return statesWithProbabilityGreater0;
            }
            
            template <typename T>
            storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                storm::storage::BitVector statesWithProbability0 = performProbGreater0E(backwardTransitions, phiStates, psiStates);
                statesWithProbability0.complement();
                return statesWithProbability0;
            }
            
            template <typename T>
            storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, boost::optional<storm::storage::BitVector> const& choiceConstraint) {
                size_t numberOfStates = phiStates.size();
                
                // Initialize the environment for the iterative algorithm.
                storm::storage::BitVector currentStates(numberOfStates, true);
                std::vector<uint_fast64_t> stack;
                stack.reserve(numberOfStates);
                
                // Perform the loop as long as the set of states gets larger.
                bool done = false;
                uint_fast64_t currentState;
                while (!done) {
                    stack.clear();
                    storm::storage::BitVector nextStates(psiStates);
                    stack.insert(stack.end(), psiStates.begin(), psiStates.end());
                    
                    while (!stack.empty()) {
                        currentState = stack.back();
                        stack.pop_back();
                        
                        for (typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
                            if (phiStates.get(predecessorEntryIt->getColumn()) && !nextStates.get(predecessorEntryIt->getColumn())) {
                                // Check whether the predecessor has only successors in the current state set for one of the
                                // nondeterminstic choices.
                                for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
                                    if (!choiceConstraint || choiceConstraint.get().get(row)) {
                                        bool allSuccessorsInCurrentStates = true;
                                        bool hasNextStateSuccessor = false;
                                        for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
                                            if (!currentStates.get(successorEntryIt->getColumn())) {
                                                allSuccessorsInCurrentStates = false;
                                                break;
                                            } else if (nextStates.get(successorEntryIt->getColumn())) {
                                                hasNextStateSuccessor = true;
                                            }
                                        }
                                        
                                        // If all successors for a given nondeterministic choice are in the current state set, we
                                        // add it to the set of states for the next iteration and perform a backward search from
                                        // that state.
                                        if (allSuccessorsInCurrentStates && hasNextStateSuccessor) {
                                            nextStates.set(predecessorEntryIt->getColumn(), true);
                                            stack.push_back(predecessorEntryIt->getColumn());
                                            break;
                                        }
                                    }
                                }
                            }
                        }
                    }
                    
                    // Check whether we need to perform an additional iteration.
                    if (currentStates == nextStates) {
                        done = true;
                    } else {
                        currentStates = std::move(nextStates);
                    }
                }
                
                return currentStates;
            }
            
            template <typename T, typename RM>
            storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<T, RM> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                return performProb1E(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
            }
            
            template <typename T>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
                
                result.first = performProb0A(backwardTransitions, phiStates, psiStates);
                
                result.second = performProb1E(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
                return result;
            }
            
            template <typename T, typename RM>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<T, RM> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                return performProb01Max(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates);
            }
            
            template <typename T>
            storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound, uint_fast64_t maximalSteps, boost::optional<storm::storage::BitVector> const& choiceConstraint) {
                size_t numberOfStates = phiStates.size();
                
                // Prepare resulting bit vector.
                storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
                
                // Add all psi states as the already satisfy the condition.
                statesWithProbabilityGreater0 |= psiStates;
                
                // Initialize the stack used for the DFS with the states
                std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
                
                // Initialize the stack for the step bound, if the number of steps is bounded.
                std::vector<uint_fast64_t> stepStack;
                std::vector<uint_fast64_t> remainingSteps;
                if (useStepBound) {
                    stepStack.reserve(numberOfStates);
                    stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
                    remainingSteps.resize(numberOfStates);
                    for (auto state : psiStates) {
                        remainingSteps[state] = maximalSteps;
                    }
                }
                
                // Perform the actual DFS.
                uint_fast64_t currentState, currentStepBound;
                while(!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();
                    
                    if (useStepBound) {
                        currentStepBound = stepStack.back();
                        stepStack.pop_back();
                        if (currentStepBound == 0) {
                            continue;
                        }
                    }
                    
                    for(typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
                        if (phiStates.get(predecessorEntryIt->getColumn())) {
                            if (!statesWithProbabilityGreater0.get(predecessorEntryIt->getColumn())) {
                                
                                // Check whether the predecessor has at least one successor in the current state set for every
                                // nondeterministic choice within the possibly given choiceConstraint.
                                
                                // Note: The backwards edge might be induced by a choice that violates the choiceConstraint.
                                // However this is not problematic as long as there is at least one enabled choice for the predecessor.
                                uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()];
                                uint_fast64_t const& endOfGroup = nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1];
                                if (!choiceConstraint || choiceConstraint->getNextSetIndex(row) < endOfGroup) {
                                    bool addToStatesWithProbabilityGreater0 = true;
                                    for (; row < endOfGroup; ++row) {
                                        if (!choiceConstraint || choiceConstraint->get(row)) {
                                            bool hasAtLeastOneSuccessorWithProbabilityGreater0 = false;
                                            for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
                                                if (statesWithProbabilityGreater0.get(successorEntryIt->getColumn())) {
                                                    hasAtLeastOneSuccessorWithProbabilityGreater0 = true;
                                                    break;
                                                }
                                            }
                                            
                                            if (!hasAtLeastOneSuccessorWithProbabilityGreater0) {
                                                addToStatesWithProbabilityGreater0 = false;
                                                break;
                                            }
                                        }
                                    }
                                    
                                    // If we need to add the state, then actually add it and perform further search from the state.
                                    if (addToStatesWithProbabilityGreater0) {
                                        // If we don't have a bound on the number of steps to take, just add the state to the stack.
                                        if (useStepBound) {
                                            // If there is at least one more step to go, we need to push the state and the new number of steps.
                                            remainingSteps[predecessorEntryIt->getColumn()] = currentStepBound - 1;
                                            stepStack.push_back(currentStepBound - 1);
                                        }
                                        statesWithProbabilityGreater0.set(predecessorEntryIt->getColumn(), true);
                                        stack.push_back(predecessorEntryIt->getColumn());
                                    }
                                }
                                
                            } else if (useStepBound && remainingSteps[predecessorEntryIt->getColumn()] < currentStepBound - 1) {
                                // We have found a shorter path to the predecessor. Hence, we need to explore it again.
                                // If there is a choiceConstraint, we still need to check whether the backwards edge was induced by a valid action
                                bool predecessorIsValid = true;
                                if (choiceConstraint) {
                                    predecessorIsValid = false;
                                    uint_fast64_t row = choiceConstraint->getNextSetIndex(nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]);
                                    uint_fast64_t const& endOfGroup = nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1];
                                    for (; row < endOfGroup && !predecessorIsValid; row = choiceConstraint->getNextSetIndex(row + 1)) {
                                        for (auto const& entry : transitionMatrix.getRow(row)) {
                                            if (entry.getColumn() == currentState) {
                                                predecessorIsValid = true;
                                                break;
                                            }
                                        }
                                    }
                                }
                                if (predecessorIsValid) {
                                    remainingSteps[predecessorEntryIt->getColumn()] = currentStepBound - 1;
                                    stepStack.push_back(currentStepBound - 1);
                                    stack.push_back(predecessorEntryIt->getColumn());
                                }
                            }
                        }
                    }
                }
                
                return statesWithProbabilityGreater0;
            }
            
            template <typename T, typename RM>
            storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<T, RM> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                storm::storage::BitVector statesWithProbability0 = performProbGreater0A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
                statesWithProbability0.complement();
                return statesWithProbability0;
            }
            
            template <typename T>
            storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices,  storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                storm::storage::BitVector statesWithProbability0 = performProbGreater0A(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
                statesWithProbability0.complement();
                return statesWithProbability0;
            }
            
            template<typename T, typename RM>
            storm::storage::BitVector performProb1A(storm::models::sparse::NondeterministicModel<T, RM> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                return performProb1A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
            }
            
            template <typename T>
            storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                size_t numberOfStates = phiStates.size();
                
                // Initialize the environment for the iterative algorithm.
                storm::storage::BitVector currentStates(numberOfStates, true);
                std::vector<uint_fast64_t> stack;
                stack.reserve(numberOfStates);
                
                // Perform the loop as long as the set of states gets smaller.
                bool done = false;
                uint_fast64_t currentState;
                while (!done) {
                    stack.clear();
                    storm::storage::BitVector nextStates(psiStates);
                    stack.insert(stack.end(), psiStates.begin(), psiStates.end());
                    
                    while (!stack.empty()) {
                        currentState = stack.back();
                        stack.pop_back();
                        
                        for(typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
                            if (phiStates.get(predecessorEntryIt->getColumn()) && !nextStates.get(predecessorEntryIt->getColumn())) {
                                // Check whether the predecessor has only successors in the current state set for all of the
                                // nondeterminstic choices and that for each choice there exists a successor that is already
                                // in the next states.
                                bool addToStatesWithProbability1 = true;
                                for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
                                    bool hasAtLeastOneSuccessorWithProbability1 = false;
                                    for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
                                        if (!currentStates.get(successorEntryIt->getColumn())) {
                                            addToStatesWithProbability1 = false;
                                            goto afterCheckLoop;
                                        }
                                        if (nextStates.get(successorEntryIt->getColumn())) {
                                            hasAtLeastOneSuccessorWithProbability1 = true;
                                        }
                                    }
                                    
                                    if (!hasAtLeastOneSuccessorWithProbability1) {
                                        addToStatesWithProbability1 = false;
                                        break;
                                    }
                                }
                                
                            afterCheckLoop:
                                // If all successors for all nondeterministic choices are in the current state set, we
                                // add it to the set of states for the next iteration and perform a backward search from
                                // that state.
                                if (addToStatesWithProbability1) {
                                    nextStates.set(predecessorEntryIt->getColumn(), true);
                                    stack.push_back(predecessorEntryIt->getColumn());
                                }
                            }
                        }
                    }
                    
                    // Check whether we need to perform an additional iteration.
                    if (currentStates == nextStates) {
                        done = true;
                    } else {
                        currentStates = std::move(nextStates);
                    }
                }
                return currentStates;
            }
            
            template <typename T>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
                result.first = performProb0E(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
                // Instead of calling performProb1A, we call the (more easier) performProb0A on the Prob0E states.
                // This is valid because, when minimizing probabilities, states that have prob1 cannot reach a state with prob 0 (and will eventually reach a psiState).
                // States that do not have prob1 will eventually reach a state with prob0.
                result.second = performProb0A(backwardTransitions, ~psiStates, result.first);
                return result;
            }
            
            template <typename T, typename RM>
            std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<T, RM> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
                return performProb01Min(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates);
            }

            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> computeSchedulerProbGreater0E(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> statesWithProbabilityGreater0E = manager.getBddZero();
                storm::dd::Bdd<Type> frontier = psiStates;
                storm::dd::Bdd<Type> scheduler = manager.getBddZero();
                
                uint_fast64_t iterations = 0;
                while (!frontier.isZero()) {
                    storm::dd::Bdd<Type> statesAndChoicesWithProbabilityGreater0E = frontier.inverseRelationalProductWithExtendedRelation(transitionMatrix, model.getRowVariables(), model.getColumnVariables());
                    frontier = phiStates && statesAndChoicesWithProbabilityGreater0E.existsAbstract(model.getNondeterminismVariables()) && !statesWithProbabilityGreater0E;
                    scheduler = scheduler || (frontier && statesAndChoicesWithProbabilityGreater0E).existsAbstractRepresentative(model.getNondeterminismVariables());
                    statesWithProbabilityGreater0E |= frontier;
                    ++iterations;
                }
                
                return scheduler;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProbGreater0E(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
                storm::dd::Bdd<Type> statesWithProbabilityGreater0E = psiStates;
                
                uint_fast64_t iterations = 0;
                storm::dd::Bdd<Type> abstractedTransitionMatrix = transitionMatrix.existsAbstract(model.getNondeterminismVariables());
                while (lastIterationStates != statesWithProbabilityGreater0E) {
                    lastIterationStates = statesWithProbabilityGreater0E;
                    statesWithProbabilityGreater0E = statesWithProbabilityGreater0E.inverseRelationalProduct(abstractedTransitionMatrix, model.getRowVariables(), model.getColumnVariables());
                    statesWithProbabilityGreater0E &= phiStates;
                    statesWithProbabilityGreater0E |= lastIterationStates;
                    ++iterations;
                }
                
                return statesWithProbabilityGreater0E;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb0A(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                return !performProbGreater0E(model, transitionMatrix, phiStates, psiStates) && model.getReachableStates();
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProbGreater0A(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
                storm::dd::Bdd<Type> statesWithProbabilityGreater0A = psiStates;
                
                uint_fast64_t iterations = 0;
                while (lastIterationStates != statesWithProbabilityGreater0A) {
                    lastIterationStates = statesWithProbabilityGreater0A;
                    statesWithProbabilityGreater0A = statesWithProbabilityGreater0A.inverseRelationalProductWithExtendedRelation(transitionMatrix, model.getRowVariables(), model.getColumnVariables());
                    statesWithProbabilityGreater0A |= model.getIllegalMask();
                    statesWithProbabilityGreater0A = statesWithProbabilityGreater0A.universalAbstract(model.getNondeterminismVariables());
                    statesWithProbabilityGreater0A &= phiStates;
                    statesWithProbabilityGreater0A |= psiStates;
                    ++iterations;
                }
                
                return statesWithProbabilityGreater0A;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb0E(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                return !performProbGreater0A(model, transitionMatrix, phiStates, psiStates) && model.getReachableStates();
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb1A(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0A) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
                storm::dd::Bdd<Type> statesWithProbability1A = psiStates || statesWithProbabilityGreater0A;
                
                uint_fast64_t iterations = 0;
                while (lastIterationStates != statesWithProbability1A) {
                    lastIterationStates = statesWithProbability1A;
                    statesWithProbability1A = statesWithProbability1A.swapVariables(model.getRowColumnMetaVariablePairs());
                    statesWithProbability1A = transitionMatrix.implies(statesWithProbability1A).universalAbstract(model.getColumnVariables());
                    statesWithProbability1A |= model.getIllegalMask();
                    statesWithProbability1A = statesWithProbability1A.universalAbstract(model.getNondeterminismVariables());
                    statesWithProbability1A &= statesWithProbabilityGreater0A;
                    statesWithProbability1A |= psiStates;
                    ++iterations;
                }
                
                return statesWithProbability1A;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> performProb1E(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0E) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> statesWithProbability1E = statesWithProbabilityGreater0E;
                
                uint_fast64_t iterations = 0;
                bool outerLoopDone = false;
                while (!outerLoopDone) {
                    storm::dd::Bdd<Type> innerStates = manager.getBddZero();
                    
                    bool innerLoopDone = false;
                    while (!innerLoopDone) {
                        storm::dd::Bdd<Type> temporary = statesWithProbability1E.swapVariables(model.getRowColumnMetaVariablePairs());
                        temporary = transitionMatrix.implies(temporary).universalAbstract(model.getColumnVariables());
                        
                        storm::dd::Bdd<Type> temporary2 = innerStates.inverseRelationalProductWithExtendedRelation(transitionMatrix, model.getRowVariables(), model.getColumnVariables());
                        
                        temporary = temporary.andExists(temporary2, model.getNondeterminismVariables());
                        temporary &= phiStates;
                        temporary |= psiStates;
                        
                        if (innerStates == temporary) {
                            innerLoopDone = true;
                        } else {
                            innerStates = temporary;
                        }
                    }
                    
                    if (statesWithProbability1E == innerStates) {
                        outerLoopDone = true;
                    } else {
                        statesWithProbability1E = innerStates;
                    }
                    ++iterations;
                }
                
                return statesWithProbability1E;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            storm::dd::Bdd<Type> computeSchedulerProb1E(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbability1E) {
                // Initialize environment for backward search.
                storm::dd::DdManager<Type> const& manager = model.getManager();
                storm::dd::Bdd<Type> scheduler = manager.getBddZero();

                storm::dd::Bdd<Type> innerStates = manager.getBddZero();
                
                uint64_t iterations = 0;
                bool innerLoopDone = false;
                while (!innerLoopDone) {
                    storm::dd::Bdd<Type> temporary = statesWithProbability1E.swapVariables(model.getRowColumnMetaVariablePairs());
                    temporary = transitionMatrix.implies(temporary).universalAbstract(model.getColumnVariables());
                    
                    storm::dd::Bdd<Type> temporary2 = innerStates.inverseRelationalProductWithExtendedRelation(transitionMatrix, model.getRowVariables(), model.getColumnVariables());
                    temporary &= temporary2;
                    temporary &= phiStates;

                    // Extend the scheduler for those states that have not been seen as inner states before.
                    scheduler |= (temporary && !innerStates).existsAbstractRepresentative(model.getNondeterminismVariables());
                    
                    temporary = temporary.existsAbstract(model.getNondeterminismVariables());
                    temporary |= psiStates;
                    
                    if (innerStates == temporary) {
                        innerLoopDone = true;
                    } else {
                        innerStates = temporary;
                    }
                    ++iterations;
                }
            
                return scheduler;
            }
        
            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Max(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                return performProb01Max(model, model.getTransitionMatrix().notZero(), phiStates, psiStates);
            }

            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Max(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
                result.first = performProb0A(model, transitionMatrix, phiStates, psiStates);
                result.second = performProb1E(model, transitionMatrix, phiStates, psiStates, !result.first && model.getReachableStates());
                return result;
            }

            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Min(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                return performProb01Min(model, model.getTransitionMatrix().notZero(), phiStates, psiStates);
            }

            template <storm::dd::DdType Type, typename ValueType>
            std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Min(storm::models::symbolic::NondeterministicModel<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
                std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
                result.first = performProb0E(model, transitionMatrix, phiStates, psiStates);
                result.second = performProb1A(model, transitionMatrix, psiStates, !result.first && model.getReachableStates());
                return result;
            }

            template <typename ValueType>
            ExplicitGameProb01Result performProb0(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint64_t> const& player1Groups, storm::storage::SparseMatrix<ValueType> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair) {
             
                ExplicitGameProb01Result result(psiStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount()));
                
                // Initialize the stack used for the DFS with the states
                std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());

                // Perform the actual DFS.
                uint_fast64_t currentState;
                while (!stack.empty()) {
                    currentState = stack.back();
                    stack.pop_back();

                    // Check which player 2 predecessors of the current player 1 state to add.
                    for (auto const& player2PredecessorEntry : player1BackwardTransitions.getRow(currentState)) {
                        uint64_t player2Predecessor = player2PredecessorEntry.getColumn();
                        if (!result.player2States.get(player2Predecessor)) {
                            bool addPlayer2State = false;
                            if (player2Direction == OptimizationDirection::Minimize) {
                                bool allChoicesHavePlayer1State = true;
                                for (uint64_t row = transitionMatrix.getRowGroupIndices()[player2Predecessor]; row < transitionMatrix.getRowGroupIndices()[player2Predecessor + 1]; ++row) {
                                    bool choiceHasPlayer1State = false;
                                    for (auto const& entry : transitionMatrix.getRow(row)) {
                                        if (result.player1States.get(entry.getColumn())) {
                                            choiceHasPlayer1State = true;
                                            break;
                                        }
                                    }
                                    if (!choiceHasPlayer1State) {
                                        allChoicesHavePlayer1State = false;
                                    }
                                }
                                if (allChoicesHavePlayer1State) {
                                    addPlayer2State = true;
                                }
                            } else {
                                addPlayer2State = true;
                            }
                            
                            if (addPlayer2State) {
                                result.player2States.set(player2Predecessor);
                                
                                // Now check whether adding the player 2 state changes something with respect to the
                                // (single) player 1 predecessor.
                                uint64_t player1Predecessor = player2BackwardTransitions[player2Predecessor];
                                
                                if (!result.player1States.get(player1Predecessor)) {
                                    bool addPlayer1State = false;
                                    if (player1Direction == OptimizationDirection::Minimize) {
                                        bool allPlayer2Successors = true;
                                        for (uint64_t player2State = player1Groups[player1Predecessor]; player2State < player1Groups[player1Predecessor + 1]; ++player2State) {
                                            if (!result.player2States.get(player2State)) {
                                                allPlayer2Successors = false;
                                                break;
                                            }
                                        }
                                        if (allPlayer2Successors) {
                                            addPlayer1State = true;
                                        }
                                    } else {
                                        addPlayer1State = true;
                                    }
                                    
                                    if (addPlayer1State) {
                                        result.player1States.set(player1Predecessor);
                                        stack.emplace_back(player1Predecessor);
                                    }
                                }
                            }
                        }
                    }
                }

                // Since we have determined the complements of the desired sets, we need to complement it now.
                result.player1States.complement();
                result.player2States.complement();
                
                // Generate player 1 strategy if required.
                if (strategyPair) {
                    for (auto player1State : result.player1States) {
                        if (player1Direction == storm::OptimizationDirection::Minimize) {
                            // At least one player 2 successor is a state with probability 0, find it.
                            bool foundProb0Successor = false;
                            uint64_t player2State;
                            for (player2State = player1Groups[player1State]; player2State < player1Groups[player1State + 1]; ++player2State) {
                                if (result.player2States.get(player2State)) {
                                    foundProb0Successor = true;
                                    break;
                                }
                            }
                            STORM_LOG_ASSERT(foundProb0Successor, "Expected at least one state 2 successor with probability 0.");
                            strategyPair->getPlayer1Strategy().setChoice(player1State, player2State);
                        } else {
                            // Since all player 2 successors are states with probability 0, just pick any.
                            strategyPair->getPlayer1Strategy().setChoice(player1State, player1Groups[player1State]);
                        }
                    }
                }

                // Generate player 2 strategy if required.
                if (strategyPair) {
                    for (auto player2State : result.player2States) {
                        if (player2Direction == storm::OptimizationDirection::Minimize) {
                            // At least one distribution only has successors with probability 0, find it.
                            bool foundProb0SuccessorDistribution = false;
                            
                            uint64_t row;
                            for (row = transitionMatrix.getRowGroupIndices()[player2State]; row < transitionMatrix.getRowGroupIndices()[player2State + 1]; ++row) {
                                bool distributionHasOnlyProb0Successors = true;
                                for (auto const& player1SuccessorEntry : transitionMatrix.getRow(row)) {
                                    if (!result.player1States.get(player1SuccessorEntry.getColumn())) {
                                        distributionHasOnlyProb0Successors = false;
                                        break;
                                    }
                                }
                                if (distributionHasOnlyProb0Successors) {
                                    foundProb0SuccessorDistribution = true;
                                    break;
                                }
                            }
                            
                            STORM_LOG_ASSERT(foundProb0SuccessorDistribution, "Expected at least one distribution with only successors with probability 0.");
                            strategyPair->getPlayer2Strategy().setChoice(player2State, row);
                        } else {
                            // Since all player 1 successors are states with probability 0, just pick any.
                            strategyPair->getPlayer2Strategy().setChoice(player2State, transitionMatrix.getRowGroupIndices()[player2State]);
                        }
                    }
                }

                return result;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            SymbolicGameProb01Result<Type> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy) {

                // The solution sets.
                storm::dd::Bdd<Type> player1States = psiStates;
                storm::dd::Bdd<Type> player2States = model.getManager().getBddZero();
                
                bool done = false;
                uint_fast64_t iterations = 0;
                while (!done) {
                    storm::dd::Bdd<Type> tmp = (transitionMatrix && player1States.swapVariables(model.getRowColumnMetaVariablePairs())).existsAbstract(model.getColumnVariables()) && phiStates;
                    
                    if (player2Strategy == OptimizationDirection::Minimize) {
                        tmp = (tmp || model.getIllegalPlayer2Mask()).universalAbstract(model.getPlayer2Variables());
                    } else {
                        tmp = tmp.existsAbstract(model.getPlayer2Variables());
                    }
                    player2States |= tmp;
                    
                    if (player1Strategy == OptimizationDirection::Minimize) {
                        tmp = (tmp || model.getIllegalPlayer1Mask()).universalAbstract(model.getPlayer1Variables());
                    } else {
                        tmp = tmp.existsAbstract(model.getPlayer1Variables());
                    }
                    
                    // Re-add all previous player 1 states.
                    tmp |= player1States;
                    
                    if (tmp == player1States) {
                        done = true;
                    }
                    
                    player1States = tmp;
                    ++iterations;
                }
                
                // Since we have determined the complements of the desired sets, we need to complement it now.
                player1States = !player1States && model.getReachableStates();
                
                std::set<storm::expressions::Variable> variablesToAbstract(model.getColumnVariables());
                variablesToAbstract.insert(model.getPlayer2Variables().begin(), model.getPlayer2Variables().end());
                player2States = !player2States && transitionMatrix.existsAbstract(variablesToAbstract);

                // Determine all transitions between prob0 states.
                storm::dd::Bdd<Type> transitionsBetweenProb0States = player2States && (transitionMatrix && player1States.swapVariables(model.getRowColumnMetaVariablePairs()));
                
                // Determine the distributions that have only successors that are prob0 states.
                storm::dd::Bdd<Type> onlyProb0Successors = (transitionsBetweenProb0States || model.getIllegalSuccessorMask()).universalAbstract(model.getColumnVariables());
                
                boost::optional<storm::dd::Bdd<Type>> player2StrategyBdd;
                if (producePlayer2Strategy) {
                    // Pick a distribution that has only prob0 successors.
                    player2StrategyBdd = onlyProb0Successors.existsAbstractRepresentative(model.getPlayer2Variables());
                }
                
                boost::optional<storm::dd::Bdd<Type>> player1StrategyBdd;
                if (producePlayer1Strategy) {
                    // Move from player 2 choices with only prob0 successors to player 1 choices with only prob 0 successors.
                    onlyProb0Successors = (player1States && onlyProb0Successors).existsAbstract(model.getPlayer2Variables());
                    
                    // Pick a prob0 player 2 state.
                    player1StrategyBdd = onlyProb0Successors.existsAbstractRepresentative(model.getPlayer1Variables());
                }
                
                return SymbolicGameProb01Result<Type>(player1States, player2States, player1StrategyBdd, player2StrategyBdd);
            }
            
            template <typename ValueType>
            ExplicitGameProb01Result performProb1(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint64_t> const& player1Groups, storm::storage::SparseMatrix<ValueType> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair, boost::optional<storm::storage::BitVector> const& player1Candidates) {
                
                // During the execution, the two state sets in the result hold the potential player 1/2 states.
                ExplicitGameProb01Result result;
                if (player1Candidates) {
                    result = ExplicitGameProb01Result(player1Candidates.get(), storm::storage::BitVector(transitionMatrix.getRowGroupCount()));
                } else {
                    result = ExplicitGameProb01Result(storm::storage::BitVector(phiStates.size(), true), storm::storage::BitVector(transitionMatrix.getRowGroupCount()));
                }
                
                // A flag that governs whether strategies are produced in the current iteration.
                bool produceStrategiesInIteration = false;

                // Initialize the stack used for the DFS with the states
                std::vector<uint_fast64_t> stack;
                bool maybeStatesDone = false;
                uint_fast64_t maybeStateIterations = 0;
                while (!maybeStatesDone || produceStrategiesInIteration) {
                    storm::storage::BitVector player1Solution = psiStates;
                    storm::storage::BitVector player2Solution(result.player2States.size());
                    
                    stack.clear();
                    stack.insert(stack.end(), psiStates.begin(), psiStates.end());
                    
                    // Perform the actual DFS.
                    uint_fast64_t currentState;
                    while (!stack.empty()) {
                        currentState = stack.back();
                        stack.pop_back();

                        for (auto player2PredecessorEntry : player1BackwardTransitions.getRow(currentState)) {
                            uint64_t player2Predecessor = player2PredecessorEntry.getColumn();
                            if (!player2Solution.get(player2PredecessorEntry.getColumn())) {
                                bool addPlayer2State = player2Direction == storm::OptimizationDirection::Minimize ? true : false;
                                
                                uint64_t validChoice = transitionMatrix.getRowGroupIndices()[player2Predecessor];
                                for (uint64_t row = validChoice; row < transitionMatrix.getRowGroupIndices()[player2Predecessor + 1]; ++row) {
                                    bool choiceHasSolutionSuccessor = false;
                                    bool choiceStaysInMaybeStates = true;
                                    for (auto const& entry : transitionMatrix.getRow(row)) {
                                        if (player1Solution.get(entry.getColumn())) {
                                            choiceHasSolutionSuccessor = true;
                                        }
                                        if (!result.player1States.get(entry.getColumn())) {
                                            choiceStaysInMaybeStates = false;
                                            break;
                                        }
                                    }
                                    
                                    if (choiceHasSolutionSuccessor && choiceStaysInMaybeStates) {
                                        if (player2Direction == storm::OptimizationDirection::Maximize) {
                                            validChoice = row;
                                            addPlayer2State = true;
                                            break;
                                        }
                                    } else if (player2Direction == storm::OptimizationDirection::Minimize) {
                                        addPlayer2State = false;
                                        break;
                                    }
                                }
                                
                                if (addPlayer2State) {
                                    player2Solution.set(player2Predecessor);
                                    if (produceStrategiesInIteration) {
                                        strategyPair->getPlayer2Strategy().setChoice(player2Predecessor, validChoice);
                                    }
                                    
                                    // Check whether the addition of the player 2 state changes the state of the (single)
                                    // player 1 predecessor.
                                    uint64_t player1Predecessor = player2BackwardTransitions[player2Predecessor];
                                    
                                    if (!player1Solution.get(player1Predecessor)) {
                                        bool addPlayer1State = player1Direction == storm::OptimizationDirection::Minimize ? true : false;
                                        
                                        validChoice = player1Groups[player1Predecessor];
                                        for (uint64_t player2Successor = validChoice; player2Successor < player1Groups[player1Predecessor + 1]; ++player2Successor) {
                                            if (player2Solution.get(player2Successor)) {
                                                if (player1Direction == storm::OptimizationDirection::Maximize) {
                                                    validChoice = player2Successor;
                                                    addPlayer1State = true;
                                                    break;
                                                }
                                            } else if (player1Direction == storm::OptimizationDirection::Minimize) {
                                                addPlayer1State = false;
                                                break;
                                            }
                                        }
                                        
                                        if (addPlayer1State) {
                                            player1Solution.set(player1Predecessor);
                                            
                                            if (produceStrategiesInIteration) {
                                                strategyPair->getPlayer1Strategy().setChoice(player1Predecessor, validChoice);
                                            }
                                            
                                            stack.emplace_back(player1Predecessor);
                                        }
                                    }
                                }
                            }
                        }
                    }
                    
                    if (result.player1States == player1Solution) {
                        maybeStatesDone = true;
                        result.player2States = player2Solution;
                        
                        // If we were asked to produce strategies, we propagate that by triggering another iteration.
                        // We only do this if at least one strategy will be produced.
                        produceStrategiesInIteration = !produceStrategiesInIteration && strategyPair;
                    } else {
                        result.player1States = player1Solution;
                        result.player2States = player2Solution;
                    }
                    ++maybeStateIterations;
                }
                
                return result;
            }
            
            template <storm::dd::DdType Type, typename ValueType>
            SymbolicGameProb01Result<Type> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy, boost::optional<storm::dd::Bdd<Type>> const& player1Candidates) {
                
                // Create the potential prob1 states of player 1.
                storm::dd::Bdd<Type> maybePlayer1States = model.getReachableStates();
                if (player1Candidates) {
                    maybePlayer1States &= player1Candidates.get();
                }
                
                // Initialize potential prob1 states of player 2.
                storm::dd::Bdd<Type> maybePlayer2States = model.getManager().getBddZero();

                // A flag that governs whether strategies are produced in the current iteration.
                bool produceStrategiesInIteration = false;
                boost::optional<storm::dd::Bdd<Type>> player1StrategyBdd;
                boost::optional<storm::dd::Bdd<Type>> consideredPlayer1States;
                boost::optional<storm::dd::Bdd<Type>> player2StrategyBdd;
                boost::optional<storm::dd::Bdd<Type>> consideredPlayer2States;
                
                bool maybeStatesDone = false;
                uint_fast64_t maybeStateIterations = 0;
                while (!maybeStatesDone || produceStrategiesInIteration) {
                    bool solutionStatesDone = false;
                    uint_fast64_t solutionStateIterations = 0;
                    
                    // If we are to produce strategies in this iteration, we prepare some storage.
                    if (produceStrategiesInIteration) {
                        if (player1Strategy == storm::OptimizationDirection::Maximize) {
                            player1StrategyBdd = model.getManager().getBddZero();
                            consideredPlayer1States = model.getManager().getBddZero();
                        }
                        if (player2Strategy == storm::OptimizationDirection::Maximize) {
                            player2StrategyBdd = model.getManager().getBddZero();
                            consideredPlayer2States = model.getManager().getBddZero();
                        }
                    }
                    
                    storm::dd::Bdd<Type> player1Solution = psiStates;
                    storm::dd::Bdd<Type> player2Solution = model.getManager().getBddZero();
                    while (!solutionStatesDone) {
                        // Start by computing the transitions that have only maybe states as successors. Note that at
                        // this point, there may be illegal transitions.
                        storm::dd::Bdd<Type> distributionsStayingInMaybe = (!transitionMatrix || maybePlayer1States.swapVariables(model.getRowColumnMetaVariablePairs())).universalAbstract(model.getColumnVariables());
                        
                        // Then, determine all distributions that have at least one successor in the states that have
                        // probability 1.
                        storm::dd::Bdd<Type> distributionsWithProb1Successor = (transitionMatrix && player1Solution.swapVariables(model.getRowColumnMetaVariablePairs())).existsAbstract(model.getColumnVariables());
                        
                        // The valid distributions are then those that emanate from phi states, stay completely in the
                        // maybe states and have at least one successor with probability 1.
                        storm::dd::Bdd<Type> valid = phiStates && distributionsStayingInMaybe && distributionsWithProb1Successor;

                        // Depending on the strategy of player 2, we need to check whether all choices are valid or
                        // there exists a valid choice.
                        if (player2Strategy == OptimizationDirection::Minimize) {
                            valid = (valid || model.getIllegalPlayer2Mask()).universalAbstract(model.getPlayer2Variables());
                        } else {
                            if (produceStrategiesInIteration) {
                                storm::dd::Bdd<Type> newValidDistributions = valid && !consideredPlayer2States.get();
                                player2StrategyBdd.get() = player2StrategyBdd.get() || newValidDistributions.existsAbstractRepresentative(model.getPlayer2Variables());
                            }

                            valid = valid.existsAbstract(model.getPlayer2Variables());
                            
                            if (produceStrategiesInIteration) {
                                consideredPlayer2States.get() |= valid;
                            }
                        }
                        
                        player2Solution |= valid;
                        
                        // And do the same for player 1.
                        if (player1Strategy == OptimizationDirection::Minimize) {
                            valid = (valid || model.getIllegalPlayer1Mask()).universalAbstract(model.getPlayer1Variables());
                        } else {
                            if (produceStrategiesInIteration) {
                                storm::dd::Bdd<Type> newValidDistributions = valid && !consideredPlayer1States.get();
                                player1StrategyBdd.get() = player1StrategyBdd.get() || newValidDistributions.existsAbstractRepresentative(model.getPlayer1Variables());
                            }

                            valid = valid.existsAbstract(model.getPlayer1Variables());
                            
                            if (produceStrategiesInIteration) {
                                consideredPlayer1States.get() |= valid;
                            }
                        }
                        
                        // Explicitly add psi states to result since they may have transitions going to some state that
                        // does not have a reachability probability of 1.
                        valid |= psiStates;
                        
                        // If no new states were added, we have found the current hypothesis for the states with
                        // probability 1.
                        if (valid == player1Solution) {
                            solutionStatesDone = true;
                        } else {
                            player1Solution = valid;
                        }
                        ++solutionStateIterations;
                    }
                    
                    // If the states with probability 1 and the potential probability 1 states coincide, we have found
                    // the solution.
                    if (player1Solution == maybePlayer1States) {
                        maybePlayer2States = player2Solution;
                        maybeStatesDone = true;
                        
                        // If we were asked to produce strategies, we propagate that by triggering another iteration.
                        // We only do this if at least one strategy will be produced.
                        produceStrategiesInIteration = !produceStrategiesInIteration && ((producePlayer1Strategy && player1Strategy == OptimizationDirection::Maximize) || (producePlayer2Strategy && player2Strategy == OptimizationDirection::Maximize));
                    } else {
                        // Otherwise, we use the current hypothesis for the states with probability 1 as the new maybe
                        // state set.
                        maybePlayer1States = player1Solution;
                    }
                    ++maybeStateIterations;
                }
                
                // From now on, the solution is stored in maybeStates (as it coincides with the previous solution).
                
                // If we were asked to produce strategies that do not need to pick a certain successor but are
                // 'arbitrary', do so now.
                bool strategiesToCompute = (producePlayer1Strategy && !player1StrategyBdd) || (producePlayer2Strategy && !player2StrategyBdd);
                if (strategiesToCompute) {
                    storm::dd::Bdd<Type> relevantStates = (transitionMatrix && maybePlayer2States).existsAbstract(model.getColumnVariables());
                    if (producePlayer2Strategy && !player2StrategyBdd) {
                        player2StrategyBdd = relevantStates.existsAbstractRepresentative(model.getPlayer2Variables());
                    }
                    if (producePlayer1Strategy && !player1StrategyBdd) {
                        relevantStates = (maybePlayer1States && relevantStates).existsAbstract(model.getPlayer2Variables());
                        player1StrategyBdd = relevantStates.existsAbstractRepresentative(model.getPlayer1Variables());
                    }
                }
                
                return SymbolicGameProb01Result<Type>(maybePlayer1States, maybePlayer2States, player1StrategyBdd, player2StrategyBdd);
            }


            template<typename T>
            void topologicalSortHelper(storm::storage::SparseMatrix<T> const& matrix, uint64_t state, std::vector<uint_fast64_t>& topologicalSort, std::vector<uint_fast64_t>& recursionStack, std::vector<typename storm::storage::SparseMatrix<T>::const_iterator>& iteratorRecursionStack, storm::storage::BitVector& visitedStates) {
                if (!visitedStates.get(state)) {
                    recursionStack.push_back(state);
                    iteratorRecursionStack.push_back(matrix.begin(state));

                    recursionStepForward:
                        while (!recursionStack.empty()) {
                            uint_fast64_t currentState = recursionStack.back();
                            typename storm::storage::SparseMatrix<T>::const_iterator successorIterator = iteratorRecursionStack.back();

                            visitedStates.set(currentState, true);

                            recursionStepBackward:
                                for (; successorIterator != matrix.end(currentState); ++successorIterator) {
                                    if (!visitedStates.get(successorIterator->getColumn())) {
                                        // Put unvisited successor on top of our recursion stack and remember that.
                                        recursionStack.push_back(successorIterator->getColumn());

                                        // Also, put initial value for iterator on corresponding recursion stack.
                                        iteratorRecursionStack.push_back(matrix.begin(successorIterator->getColumn()));

                                        goto recursionStepForward;
                                    }
                                }

                                topologicalSort.push_back(currentState);

                                // If we reach this point, we have completed the recursive descent for the current state.
                                // That is, we need to pop it from the recursion stacks.
                                recursionStack.pop_back();
                                iteratorRecursionStack.pop_back();

                                // If there is at least one state under the current one in our recursion stack, we need
                                // to restore the topmost state as the current state and jump to the part after the
                                // original recursive call.
                                if (recursionStack.size() > 0) {
                                    currentState = recursionStack.back();
                                    successorIterator = iteratorRecursionStack.back();

                                    goto recursionStepBackward;
                                }
                        }
                }
            }

            template <typename T>
            std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<T> const& matrix, std::vector<uint64_t> const& firstStates) {
                if (matrix.getRowCount() != matrix.getColumnCount()) {
                    STORM_LOG_ERROR("Provided matrix is required to be square.");
                    throw storm::exceptions::InvalidArgumentException() << "Provided matrix is required to be square.";
                }
                
                uint_fast64_t numberOfStates = matrix.getRowCount();
                
                // Prepare the result. This relies on the matrix being square.
                std::vector<uint_fast64_t> topologicalSort;
                topologicalSort.reserve(numberOfStates);
                
                // Prepare the stacks needed for recursion.
                std::vector<uint_fast64_t> recursionStack;
                recursionStack.reserve(matrix.getRowCount());
                std::vector<typename storm::storage::SparseMatrix<T>::const_iterator> iteratorRecursionStack;
                iteratorRecursionStack.reserve(numberOfStates);
                
                // Perform a depth-first search over the given transitions and record states in the reverse order they were visited.
                storm::storage::BitVector visitedStates(numberOfStates);
                for (auto const state : firstStates ) {
                    topologicalSortHelper<T>(matrix, state, topologicalSort, recursionStack, iteratorRecursionStack, visitedStates);
                }
                for (uint_fast64_t state = 0; state < numberOfStates; ++state) {
                    topologicalSortHelper<T>(matrix, state, topologicalSort, recursionStack, iteratorRecursionStack, visitedStates);
                }
                
                return topologicalSort;
            }


            template storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates, bool useStepBound, uint_fast64_t maximalSteps, boost::optional<storm::storage::BitVector> const& choiceFilter);
            
            template storm::storage::BitVector getBsccCover(storm::storage::SparseMatrix<double> const& transitionMatrix);
           
            template bool hasCycle(storm::storage::SparseMatrix<double> const& transitionMatrix, boost::optional<storm::storage::BitVector> const& subsystem);
            
            template bool checkIfECWithChoiceExists(storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& choices);
            
            template std::vector<uint_fast64_t> getDistances(storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::BitVector const& initialStates, boost::optional<storm::storage::BitVector> const& subsystem);
            
            
            template storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0);
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0);
            
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<double> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            
            template void computeSchedulerProbGreater0E(storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<double>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter);
            
            template void computeSchedulerProb0E(storm::storage::BitVector const& prob0EStates, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::Scheduler<double>& scheduler);

            template void computeSchedulerRewInf(storm::storage::BitVector const& rewInfStates, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::Scheduler<double>& scheduler);


            template void computeSchedulerProb1E(storm::storage::BitVector const& prob1EStates, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<double>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter = boost::none);
            
            template storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) ;
            
            template storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            
            template storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<double>> const& model, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<double>> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            
            template storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<double>> const& model, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#ifdef STORM_HAVE_CARL
            template storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>> const& model, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#endif
            template storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices,  storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProb1A(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<double>> const& model, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#ifdef STORM_HAVE_CARL
            template storm::storage::BitVector performProb1A(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>> const& model, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#endif
            template storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<double>> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#ifdef STORM_HAVE_CARL
			template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<double, storm::models::sparse::StandardRewardModel<storm::Interval>> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
#endif
            
            template ExplicitGameProb01Result performProb0(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint64_t> const& player1RowGrouping, storm::storage::SparseMatrix<double> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair);
            
            template ExplicitGameProb01Result performProb1(storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<uint64_t> const& player1RowGrouping, storm::storage::SparseMatrix<double> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair, boost::optional<storm::storage::BitVector> const& player1Candidates);
            
            template std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<double> const& matrix,  std::vector<uint64_t> const& firstStates) ;
            
            // Instantiations for storm::RationalNumber.
#ifdef STORM_HAVE_CARL
            template storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates, bool useStepBound, uint_fast64_t maximalSteps, boost::optional<storm::storage::BitVector> const& choiceFilter);
            
            template storm::storage::BitVector getBsccCover(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix);
            
            template bool hasCycle(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, boost::optional<storm::storage::BitVector> const& subsystem);

            template bool checkIfECWithChoiceExists(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& choices);

            template std::vector<uint_fast64_t> getDistances(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::BitVector const& initialStates, boost::optional<storm::storage::BitVector> const& subsystem);
            
            template storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0);
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0);
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<storm::RationalNumber> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template void computeSchedulerProbGreater0E(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<storm::RationalNumber>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter);
            
            template void computeSchedulerProb0E(storm::storage::BitVector const& prob0EStates, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::Scheduler<storm::RationalNumber>& scheduler);

            template void computeSchedulerRewInf(storm::storage::BitVector const& rewInfStates, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::Scheduler<storm::RationalNumber>& scheduler);

            template void computeSchedulerProb1E(storm::storage::BitVector const& prob1EStates, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::Scheduler<storm::RationalNumber>& scheduler, boost::optional<storm::storage::BitVector> const& rowFilter = boost::none);
            
            template storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) ;
            
            template storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            template storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<storm::RationalNumber> const& model, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<storm::RationalNumber> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            template storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<storm::RationalNumber> const& model, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices,  storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<storm::RationalNumber> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template ExplicitGameProb01Result performProb0(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint64_t> const& player1RowGrouping, storm::storage::SparseMatrix<storm::RationalNumber> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair);
            
            template ExplicitGameProb01Result performProb1(storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<uint64_t> const& player1RowGrouping, storm::storage::SparseMatrix<storm::RationalNumber> const& player1BackwardTransitions, std::vector<uint64_t> const& player2BackwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::abstraction::ExplicitGameStrategyPair* strategyPair, boost::optional<storm::storage::BitVector> const& player1Candidates);
            
            template std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<storm::RationalNumber> const& matrix,  std::vector<uint64_t> const& firstStates);
            // End of instantiations for storm::RationalNumber.
            
            template storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates, bool useStepBound, uint_fast64_t maximalSteps, boost::optional<storm::storage::BitVector> const& choiceFilter);
            
            template storm::storage::BitVector getBsccCover(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix);
            
            template bool hasCycle(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, boost::optional<storm::storage::BitVector> const& subsystem);

            template bool checkIfECWithChoiceExists(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& choices);
            
            template std::vector<uint_fast64_t> getDistances(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, storm::storage::BitVector const& initialStates, boost::optional<storm::storage::BitVector> const& subsystem);
            
            
            template storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0);
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0);
            
            
            template storm::storage::BitVector performProb1(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<storm::RationalFunction> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            
            template storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) ;
            
            template storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            template storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<storm::RationalFunction> const& model, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);

            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<storm::RationalFunction> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0, boost::optional<storm::storage::BitVector> const& choiceConstraint = boost::none);
            
            template storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<storm::RationalFunction> const& model, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            template storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices,  storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template storm::storage::BitVector performProb1A(storm::models::sparse::NondeterministicModel<storm::RationalFunction> const& model, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            template storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<storm::RationalFunction> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
            
            template std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<storm::RationalFunction> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
            
            
            template std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<storm::RationalFunction> const& matrix,  std::vector<uint64_t> const& firstStates);
            
#endif
            
            // Instantiations for CUDD.
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProbGreater0(storm::models::symbolic::Model<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>());
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb1(storm::models::symbolic::Model<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& statesWithProbabilityGreater0);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb1(storm::models::symbolic::Model<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01(storm::models::symbolic::DeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01(storm::models::symbolic::Model<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> computeSchedulerProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProbGreater0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb1A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& statesWithProbabilityGreater0A);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> performProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& statesWithProbabilityGreater0E);
            
            template storm::dd::Bdd<storm::dd::DdType::CUDD> computeSchedulerProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& statesWithProbability1E);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);

            template SymbolicGameProb01Result<storm::dd::DdType::CUDD> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
            
            template SymbolicGameProb01Result<storm::dd::DdType::CUDD> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy, boost::optional<storm::dd::Bdd<storm::dd::DdType::CUDD>> const& player1Candidates);

            // Instantiations for Sylvan (double).
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>());
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::DeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0A);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0E);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbability1E);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template SymbolicGameProb01Result<storm::dd::DdType::Sylvan> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
            
            template SymbolicGameProb01Result<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy, boost::optional<storm::dd::Bdd<storm::dd::DdType::Sylvan>> const& player1Candidates);

            // Instantiations for Sylvan (rational number).
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>());
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::DeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0A);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0E);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbability1E);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template SymbolicGameProb01Result<storm::dd::DdType::Sylvan> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);

            template SymbolicGameProb01Result<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy, boost::optional<storm::dd::Bdd<storm::dd::DdType::Sylvan>> const& player1Candidates);

            // Instantiations for Sylvan (rational function).
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>());
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::DeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01(storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProbGreater0A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb0E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1A(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0A);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> performProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbabilityGreater0E);
            
            template storm::dd::Bdd<storm::dd::DdType::Sylvan> computeSchedulerProb1E(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& statesWithProbability1E);
            
            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Max(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

            template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, storm::RationalFunction> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);

        } // namespace graph
    } // namespace utility
} // namespace storm