#include "storm/abstraction/MenuGameRefiner.h" #include "storm/abstraction/AbstractionInformation.h" #include "storm/abstraction/MenuGameAbstractor.h" #include "storm/utility/dd.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/AbstractionSettings.h" namespace storm { namespace abstraction { template<storm::dd::DdType Type, typename ValueType> MenuGameRefiner<Type, ValueType>::MenuGameRefiner(MenuGameAbstractor<Type, ValueType>& abstractor, std::unique_ptr<storm::solver::SmtSolver>&& smtSolver) : abstractor(abstractor), splitPredicates(storm::settings::getModule<storm::settings::modules::AbstractionSettings>().isSplitPredicatesSet()), splitter(), equivalenceChecker(std::move(smtSolver)) { // Intentionally left empty. } template<storm::dd::DdType Type, typename ValueType> void MenuGameRefiner<Type, ValueType>::refine(std::vector<storm::expressions::Expression> const& predicates) const { abstractor.get().refine(predicates); } template<storm::dd::DdType Type, typename ValueType> storm::dd::Bdd<Type> pickPivotStateWithMinimalDistance(storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& transitionsMin, storm::dd::Bdd<Type> const& transitionsMax, std::set<storm::expressions::Variable> const& rowVariables, std::set<storm::expressions::Variable> const& columnVariables, storm::dd::Bdd<Type> const& pivotStates, boost::optional<QuantitativeResultMinMax<Type, ValueType>> const& quantitativeResult = boost::none) { // Set up used variables. storm::dd::Bdd<Type> frontierMin = initialStates; storm::dd::Bdd<Type> frontierMax = initialStates; storm::dd::Bdd<Type> frontierPivotStates = frontierMin && pivotStates; // Check whether we have pivot states on the very first level. uint64_t level = 0; bool foundPivotState = !frontierPivotStates.isZero(); if (foundPivotState) { STORM_LOG_TRACE("Picked pivot state from " << frontierPivotStates.getNonZeroCount() << " candidates on level " << level << ", " << pivotStates.getNonZeroCount() << " candidates in total."); return frontierPivotStates.existsAbstractRepresentative(rowVariables); } else { // Otherwise, we perform a simulatenous BFS in the sense that we make one step in both the min and max // transitions and check for pivot states we encounter. while (!foundPivotState) { frontierMin = frontierMin.relationalProduct(transitionsMin, rowVariables, columnVariables); frontierMax = frontierMax.relationalProduct(transitionsMax, rowVariables, columnVariables); frontierPivotStates = (frontierMin && pivotStates) || (frontierMax && pivotStates); if (!frontierPivotStates.isZero()) { if (quantitativeResult) { storm::dd::Add<Type, ValueType> frontierPivotStatesAdd = frontierPivotStates.template toAdd<ValueType>(); storm::dd::Add<Type, ValueType> diff = frontierPivotStatesAdd * quantitativeResult.get().max.values - frontierPivotStatesAdd * quantitativeResult.get().min.values; STORM_LOG_TRACE("Picked pivot state with difference " << diff.getMax() << " from " << frontierPivotStates.getNonZeroCount() << " candidates on level " << level << ", " << pivotStates.getNonZeroCount() << " candidates in total."); return diff.maxAbstractRepresentative(rowVariables); } else { STORM_LOG_TRACE("Picked pivot state from " << frontierPivotStates.getNonZeroCount() << " candidates on level " << level << ", " << pivotStates.getNonZeroCount() << " candidates in total."); return frontierPivotStates.existsAbstractRepresentative(rowVariables); } } ++level; } } STORM_LOG_ASSERT(false, "This point must not be reached, because then no pivot state could be found."); return storm::dd::Bdd<Type>(); } template <storm::dd::DdType Type, typename ValueType> storm::expressions::Expression MenuGameRefiner<Type, ValueType>::derivePredicateFromDifferingChoices(storm::dd::Bdd<Type> const& pivotState, storm::dd::Bdd<Type> const& player1Choice, storm::dd::Bdd<Type> const& lowerChoice, storm::dd::Bdd<Type> const& upperChoice) const { // Prepare result. storm::expressions::Expression newPredicate; // Get abstraction informatin for easier access. AbstractionInformation<Type> const& abstractionInformation = abstractor.get().getAbstractionInformation(); // Decode the index of the command chosen by player 1. storm::dd::Add<Type, ValueType> player1ChoiceAsAdd = player1Choice.template toAdd<ValueType>(); auto pl1It = player1ChoiceAsAdd.begin(); uint_fast64_t player1Index = abstractionInformation.decodePlayer1Choice((*pl1It).first, abstractionInformation.getPlayer1VariableCount()); // Check whether there are bottom states in the game and whether one of the choices actually picks the // bottom state as the successor. bool buttomStateSuccessor = !((abstractionInformation.getBottomStateBdd(false, false) && lowerChoice) || (abstractionInformation.getBottomStateBdd(false, false) && upperChoice)).isZero(); // If one of the choices picks the bottom state, the new predicate is based on the guard of the appropriate // command (that is the player 1 choice). if (buttomStateSuccessor) { STORM_LOG_TRACE("One of the successors is a bottom state, taking a guard as a new predicate."); newPredicate = abstractor.get().getGuard(player1Index); STORM_LOG_DEBUG("Derived new predicate (based on guard): " << newPredicate); } else { STORM_LOG_TRACE("No bottom state successor. Deriving a new predicate using weakest precondition."); // Decode both choices to explicit mappings. std::map<uint_fast64_t, storm::storage::BitVector> lowerChoiceUpdateToSuccessorMapping = abstractionInformation.decodeChoiceToUpdateSuccessorMapping(lowerChoice); std::map<uint_fast64_t, storm::storage::BitVector> upperChoiceUpdateToSuccessorMapping = abstractionInformation.decodeChoiceToUpdateSuccessorMapping(upperChoice); STORM_LOG_ASSERT(lowerChoiceUpdateToSuccessorMapping.size() == upperChoiceUpdateToSuccessorMapping.size(), "Mismatching sizes after decode (" << lowerChoiceUpdateToSuccessorMapping.size() << " vs. " << upperChoiceUpdateToSuccessorMapping.size() << ")."); // Now go through the mappings and find points of deviation. Currently, we take the first deviation. auto lowerIt = lowerChoiceUpdateToSuccessorMapping.begin(); auto lowerIte = lowerChoiceUpdateToSuccessorMapping.end(); auto upperIt = upperChoiceUpdateToSuccessorMapping.begin(); for (; lowerIt != lowerIte; ++lowerIt, ++upperIt) { STORM_LOG_ASSERT(lowerIt->first == upperIt->first, "Update indices mismatch."); uint_fast64_t updateIndex = lowerIt->first; bool deviates = lowerIt->second != upperIt->second; if (deviates) { for (uint_fast64_t predicateIndex = 0; predicateIndex < lowerIt->second.size(); ++predicateIndex) { if (lowerIt->second.get(predicateIndex) != upperIt->second.get(predicateIndex)) { // Now we know the point of the deviation (command, update, predicate). newPredicate = abstractionInformation.getPredicateByIndex(predicateIndex).substitute(abstractor.get().getVariableUpdates(player1Index, updateIndex)).simplify(); break; } } } } STORM_LOG_ASSERT(newPredicate.isInitialized(), "Could not derive new predicate as there is no deviation."); STORM_LOG_DEBUG("Derived new predicate (based on weakest-precondition): " << newPredicate); } STORM_LOG_TRACE("Current set of predicates:"); for (auto const& predicate : abstractionInformation.getPredicates()) { STORM_LOG_TRACE(predicate); } return newPredicate; } template<storm::dd::DdType Type> struct PivotStateResult { storm::dd::Bdd<Type> reachableTransitionsMin; storm::dd::Bdd<Type> reachableTransitionsMax; storm::dd::Bdd<Type> pivotStates; }; template<storm::dd::DdType Type, typename ValueType> PivotStateResult<Type> computePivotStates(storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::dd::Bdd<Type> const& minPlayer1Strategy, storm::dd::Bdd<Type> const& minPlayer2Strategy, storm::dd::Bdd<Type> const& maxPlayer1Strategy, storm::dd::Bdd<Type> const& maxPlayer2Strategy) { PivotStateResult<Type> result; // Build the fragment of transitions that is reachable by either the min or the max strategies. result.reachableTransitionsMin = (transitionMatrixBdd && minPlayer1Strategy && minPlayer2Strategy).existsAbstract(game.getNondeterminismVariables()); result.reachableTransitionsMax = (transitionMatrixBdd && maxPlayer1Strategy && maxPlayer2Strategy).existsAbstract(game.getNondeterminismVariables()); // Start with all reachable states as potential pivot states. result.pivotStates = storm::utility::dd::computeReachableStates(game.getInitialStates(), result.reachableTransitionsMin, game.getRowVariables(), game.getColumnVariables()) || storm::utility::dd::computeReachableStates(game.getInitialStates(), result.reachableTransitionsMax, game.getRowVariables(), game.getColumnVariables()); // Then constrain these states by the requirement that for either the lower or upper player 1 choice the player 2 choices must be different and // that the difference is not because of a missing strategy in either case. // Start with constructing the player 2 states that have a prob 0 (min) and prob 1 (max) strategy. storm::dd::Bdd<Type> constraint = minPlayer2Strategy.existsAbstract(game.getPlayer2Variables()) && maxPlayer2Strategy.existsAbstract(game.getPlayer2Variables()); // Now construct all player 2 choices that actually exist and differ in the min and max case. constraint &= minPlayer2Strategy.exclusiveOr(maxPlayer2Strategy); // Then restrict the pivot states by requiring existing and different player 2 choices. result.pivotStates &= ((minPlayer1Strategy && maxPlayer1Strategy) && constraint).existsAbstract(game.getNondeterminismVariables()); return result; } template<storm::dd::DdType Type, typename ValueType> storm::expressions::Expression MenuGameRefiner<Type, ValueType>::derivePredicateFromPivotState(storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& pivotState, storm::dd::Bdd<Type> const& minPlayer1Strategy, storm::dd::Bdd<Type> const& minPlayer2Strategy, storm::dd::Bdd<Type> const& maxPlayer1Strategy, storm::dd::Bdd<Type> const& maxPlayer2Strategy) const { // Compute the lower and the upper choice for the pivot state. std::set<storm::expressions::Variable> variablesToAbstract = game.getNondeterminismVariables(); variablesToAbstract.insert(game.getRowVariables().begin(), game.getRowVariables().end()); storm::dd::Bdd<Type> lowerChoice = pivotState && game.getExtendedTransitionMatrix().toBdd() && minPlayer1Strategy; storm::dd::Bdd<Type> lowerChoice1 = (lowerChoice && minPlayer2Strategy).existsAbstract(variablesToAbstract); storm::dd::Bdd<Type> lowerChoice2 = (lowerChoice && maxPlayer2Strategy).existsAbstract(variablesToAbstract); bool lowerChoicesDifferent = !lowerChoice1.exclusiveOr(lowerChoice2).isZero(); if (lowerChoicesDifferent) { STORM_LOG_TRACE("Refining based on lower choice."); auto refinementStart = std::chrono::high_resolution_clock::now(); storm::expressions::Expression newPredicate = derivePredicateFromDifferingChoices(pivotState, (pivotState && minPlayer1Strategy).existsAbstract(game.getRowVariables()), lowerChoice1, lowerChoice2); auto refinementEnd = std::chrono::high_resolution_clock::now(); STORM_LOG_TRACE("Refinement completed in " << std::chrono::duration_cast<std::chrono::milliseconds>(refinementEnd - refinementStart).count() << "ms."); return newPredicate; } else { storm::dd::Bdd<Type> upperChoice = pivotState && game.getExtendedTransitionMatrix().toBdd() && maxPlayer1Strategy; storm::dd::Bdd<Type> upperChoice1 = (upperChoice && minPlayer2Strategy).existsAbstract(variablesToAbstract); storm::dd::Bdd<Type> upperChoice2 = (upperChoice && maxPlayer2Strategy).existsAbstract(variablesToAbstract); bool upperChoicesDifferent = !upperChoice1.exclusiveOr(upperChoice2).isZero(); if (upperChoicesDifferent) { STORM_LOG_TRACE("Refining based on upper choice."); auto refinementStart = std::chrono::high_resolution_clock::now(); storm::expressions::Expression newPredicate = derivePredicateFromDifferingChoices(pivotState, (pivotState && maxPlayer1Strategy).existsAbstract(game.getRowVariables()), upperChoice1, upperChoice2); auto refinementEnd = std::chrono::high_resolution_clock::now(); STORM_LOG_TRACE("Refinement completed in " << std::chrono::duration_cast<std::chrono::milliseconds>(refinementEnd - refinementStart).count() << "ms."); return newPredicate; } else { STORM_LOG_ASSERT(false, "Did not find choices from which to derive predicates."); } } } template<storm::dd::DdType Type, typename ValueType> bool MenuGameRefiner<Type, ValueType>::refine(storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& transitionMatrixBdd, QualitativeResultMinMax<Type> const& qualitativeResult) const { STORM_LOG_TRACE("Trying refinement after qualitative check."); // Get all relevant strategies. storm::dd::Bdd<Type> minPlayer1Strategy = qualitativeResult.prob0Min.getPlayer1Strategy(); storm::dd::Bdd<Type> minPlayer2Strategy = qualitativeResult.prob0Min.getPlayer2Strategy(); storm::dd::Bdd<Type> maxPlayer1Strategy = qualitativeResult.prob1Max.getPlayer1Strategy(); storm::dd::Bdd<Type> maxPlayer2Strategy = qualitativeResult.prob1Max.getPlayer2Strategy(); // Redirect all player 1 choices of the min strategy to that of the max strategy if this leads to a player 2 // state that is also a prob 0 state. minPlayer1Strategy = (maxPlayer1Strategy && qualitativeResult.prob0Min.getPlayer2States()).existsAbstract(game.getPlayer1Variables()).ite(maxPlayer1Strategy, minPlayer1Strategy); // Compute all reached pivot states. PivotStateResult<Type> pivotStateResult = computePivotStates(game, transitionMatrixBdd, minPlayer1Strategy, minPlayer2Strategy, maxPlayer1Strategy, maxPlayer2Strategy); // We can only refine in case we have a reachable player 1 state with a player 2 successor (under either // player 1's min or max strategy) such that from this player 2 state, both prob0 min and prob1 max define // strategies and they differ. Hence, it is possible that we arrive at a point where no suitable pivot state // is found. In this case, we abort the qualitative refinement here. if (pivotStateResult.pivotStates.isZero()) { return false; } STORM_LOG_ASSERT(!pivotStateResult.pivotStates.isZero(), "Unable to proceed without pivot state candidates."); // Now that we have the pivot state candidates, we need to pick one. storm::dd::Bdd<Type> pivotState = pickPivotStateWithMinimalDistance<Type, ValueType>(game.getInitialStates(), pivotStateResult.reachableTransitionsMin, pivotStateResult.reachableTransitionsMax, game.getRowVariables(), game.getColumnVariables(), pivotStateResult.pivotStates); // Derive predicate based on the selected pivot state. storm::expressions::Expression newPredicate = derivePredicateFromPivotState(game, pivotState, minPlayer1Strategy, minPlayer2Strategy, maxPlayer1Strategy, maxPlayer2Strategy); performRefinement({newPredicate}); return true; } template<storm::dd::DdType Type, typename ValueType> bool MenuGameRefiner<Type, ValueType>::refine(storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& transitionMatrixBdd, QuantitativeResultMinMax<Type, ValueType> const& quantitativeResult) const { STORM_LOG_TRACE("Refining after quantitative check."); // Get all relevant strategies. storm::dd::Bdd<Type> minPlayer1Strategy = quantitativeResult.min.player1Strategy; storm::dd::Bdd<Type> minPlayer2Strategy = quantitativeResult.min.player2Strategy; storm::dd::Bdd<Type> maxPlayer1Strategy = quantitativeResult.max.player1Strategy; storm::dd::Bdd<Type> maxPlayer2Strategy = quantitativeResult.max.player2Strategy; // Compute all reached pivot states. PivotStateResult<Type> pivotStateResult = computePivotStates(game, transitionMatrixBdd, minPlayer1Strategy, minPlayer2Strategy, maxPlayer1Strategy, maxPlayer2Strategy); // TODO: required? // Require the pivot state to be a state with a lower bound strictly smaller than the upper bound. pivotStateResult.pivotStates &= quantitativeResult.min.values.less(quantitativeResult.max.values); STORM_LOG_ASSERT(!pivotStateResult.pivotStates.isZero(), "Unable to refine without pivot state candidates."); // Now that we have the pivot state candidates, we need to pick one. storm::dd::Bdd<Type> pivotState = pickPivotStateWithMinimalDistance<Type, ValueType>(game.getInitialStates(), pivotStateResult.reachableTransitionsMin, pivotStateResult.reachableTransitionsMax, game.getRowVariables(), game.getColumnVariables(), pivotStateResult.pivotStates); // Derive predicate based on the selected pivot state. storm::expressions::Expression newPredicate = derivePredicateFromPivotState(game, pivotState, minPlayer1Strategy, minPlayer2Strategy, maxPlayer1Strategy, maxPlayer2Strategy); performRefinement({newPredicate}); return true; } template<storm::dd::DdType Type, typename ValueType> bool MenuGameRefiner<Type, ValueType>::performRefinement(std::vector<storm::expressions::Expression> const& predicates) const { if (splitPredicates) { std::vector<storm::expressions::Expression> cleanedAtoms; for (auto const& predicate : predicates) { AbstractionInformation<Type> const& abstractionInformation = abstractor.get().getAbstractionInformation(); // Split the predicates. std::vector<storm::expressions::Expression> atoms = splitter.split(predicate); // Check which of the atoms are redundant in the sense that they are equivalent to a predicate we already have. for (auto const& atom : atoms) { // Check whether the newly found atom is equivalent to an atom we already have in the predicate // set or in the set that is to be added. bool addAtom = true; for (auto const& oldPredicate : abstractionInformation.getPredicates()) { if (equivalenceChecker.areEquivalent(atom, oldPredicate)) { addAtom = false; break; } } for (auto const& addedAtom : cleanedAtoms) { if (equivalenceChecker.areEquivalent(addedAtom, atom)) { addAtom = false; break; } } if (addAtom) { cleanedAtoms.push_back(atom); } } } abstractor.get().refine(cleanedAtoms); } else { // If no splitting of the predicates is required, just forward the refinement request to the abstractor. abstractor.get().refine(predicates); } return true; } template class MenuGameRefiner<storm::dd::DdType::CUDD, double>; template class MenuGameRefiner<storm::dd::DdType::Sylvan, double>; } }