|  | 1D objects | 2D objects | Notes | 
|---|
| Constructors | \code
Vector4d  v4;
Vector2f  v1(x, y);
Array3i   v2(x, y, z);
Vector4d  v3(x, y, z, w);
VectorXf  v5; // empty object
ArrayXf   v6(size);
\endcode | \code
Matrix4f  m1;
MatrixXf  m5; // empty object
MatrixXf  m6(nb_rows, nb_columns);
\endcode | By default, the coefficients \n are left uninitialized | 
| Comma initializer | \code
Vector3f  v1;     v1 << x, y, z;
ArrayXf   v2(4);  v2 << 1, 2, 3, 4;
\endcode | \code
Matrix3f  m1;   m1 << 1, 2, 3,
                      4, 5, 6,
                      7, 8, 9;
\endcode |  | 
| Comma initializer (bis) | \include Tutorial_commainit_02.cpp | output:
\verbinclude Tutorial_commainit_02.out | 
| Runtime info | \code
vector.size();
vector.innerStride();
vector.data();
\endcode | \code
matrix.rows();          matrix.cols();
matrix.innerSize();     matrix.outerSize();
matrix.innerStride();   matrix.outerStride();
matrix.data();
\endcode | Inner/Outer* are storage order dependent | 
| Compile-time info | \code
ObjectType::Scalar              ObjectType::RowsAtCompileTime
ObjectType::RealScalar          ObjectType::ColsAtCompileTime
ObjectType::Index               ObjectType::SizeAtCompileTime
\endcode |  | 
| Resizing | \code
vector.resize(size);
vector.resizeLike(other_vector);
vector.conservativeResize(size);
\endcode | \code
matrix.resize(nb_rows, nb_cols);
matrix.resize(Eigen::NoChange, nb_cols);
matrix.resize(nb_rows, Eigen::NoChange);
matrix.resizeLike(other_matrix);
matrix.conservativeResize(nb_rows, nb_cols);
\endcode | no-op if the new sizes match, otherwise data are lost
 
 resizing with data preservation
 | 
| Coeff access with \n range checking | \code
vector(i)     vector.x()
vector[i]     vector.y()
              vector.z()
              vector.w()
\endcode | \code
matrix(i,j)
\endcode | Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined | 
| Coeff access without \n range checking | \code
vector.coeff(i)
vector.coeffRef(i)
\endcode | \code
matrix.coeff(i,j)
matrix.coeffRef(i,j)
\endcode |  | 
| Assignment/copy | \code
object = expression;
object_of_float = expression_of_double.cast();
\endcode | the destination is automatically resized (if possible) | 
\subsection QuickRef_PredefMat Predefined Matrices
  | Fixed-size matrix or vector | Dynamic-size matrix | Dynamic-size vector | 
  | \code
typedef {Matrix3f|Array33f} FixedXD;
FixedXD x;
x = FixedXD::Zero();
x = FixedXD::Ones();
x = FixedXD::Constant(value);
x = FixedXD::Random();
x = FixedXD::LinSpaced(size, low, high);
x.setZero();
x.setOnes();
x.setConstant(value);
x.setRandom();
x.setLinSpaced(size, low, high);
\endcode | \code
typedef {MatrixXf|ArrayXXf} Dynamic2D;
Dynamic2D x;
x = Dynamic2D::Zero(rows, cols);
x = Dynamic2D::Ones(rows, cols);
x = Dynamic2D::Constant(rows, cols, value);
x = Dynamic2D::Random(rows, cols);
N/A
x.setZero(rows, cols);
x.setOnes(rows, cols);
x.setConstant(rows, cols, value);
x.setRandom(rows, cols);
N/A
\endcode | \code
typedef {VectorXf|ArrayXf} Dynamic1D;
Dynamic1D x;
x = Dynamic1D::Zero(size);
x = Dynamic1D::Ones(size);
x = Dynamic1D::Constant(size, value);
x = Dynamic1D::Random(size);
x = Dynamic1D::LinSpaced(size, low, high);
x.setZero(size);
x.setOnes(size);
x.setConstant(size, value);
x.setRandom(size);
x.setLinSpaced(size, low, high);
\endcode | 
| Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld | 
  | \code
x = FixedXD::Identity();
x.setIdentity();
Vector3f::UnitX() // 1 0 0
Vector3f::UnitY() // 0 1 0
Vector3f::UnitZ() // 0 0 1
\endcode | \code
x = Dynamic2D::Identity(rows, cols);
x.setIdentity(rows, cols);
N/A
\endcode | \code
N/A
VectorXf::Unit(size,i)
VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
                    == Vector4f::UnitY()
\endcode | 
\subsection QuickRef_Map Mapping external arrays
| Contiguous \n memory | \code
float data[] = {1,2,3,4};
Map v1(data);       // uses v1 as a Vector3f object
Map  v2(data,3);     // uses v2 as a ArrayXf object
Map m1(data);       // uses m1 as a Array22f object
Map m2(data,2,2);   // uses m2 as a MatrixXf object
\endcode | 
| Typical usage \n of strides | \code
float data[] = {1,2,3,4,5,6,7,8,9};
Map >  v1(data,3);                      // = [1,3,5]
Map >   v2(data,3,InnerStride<>(3));     // = [1,4,7]
Map >  m2(data,2,3);                    // both lines     |1,4,7|
Map >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8|
\endcode | 
| add \n subtract | \code
mat3 = mat1 + mat2;           mat3 += mat1;
mat3 = mat1 - mat2;           mat3 -= mat1;\endcode | 
| scalar product | \code
mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1;
mat3 = mat1 / s1;             mat3 /= s1;\endcode | 
| matrix/vector \n products \matrixworld | \code
col2 = mat1 * col1;
row2 = row1 * mat1;           row1 *= mat1;
mat3 = mat1 * mat2;           mat3 *= mat1; \endcode | 
| transposition \n adjoint \matrixworld | \code
mat1 = mat2.transpose();      mat1.transposeInPlace();
mat1 = mat2.adjoint();        mat1.adjointInPlace();
\endcode | 
| \link MatrixBase::dot() dot \endlink product \n inner product \matrixworld | \code
scalar = vec1.dot(vec2);
scalar = col1.adjoint() * col2;
scalar = (col1.adjoint() * col2).value();\endcode | 
| outer product \matrixworld | \code
mat = col1 * col2.transpose();\endcode | 
| \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld | \code
scalar = vec1.norm();         scalar = vec1.squaredNorm()
vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode | 
| \link MatrixBase::cross() cross product \endlink \matrixworld | \code
#include 
vec3 = vec1.cross(vec2);\endcode | 
| Default versions | Optimized versions when the size \n is known at compile time | 
 | | \code vec1.head(n)\endcode | \code vec1.head()\endcode | the first \c n coeffs | 
| \code vec1.tail(n)\endcode | \code vec1.tail()\endcode | the last \c n coeffs | 
| \code vec1.segment(pos,n)\endcode | \code vec1.segment(pos)\endcode | the \c n coeffs in \n the range [\c pos : \c pos + \c n [ | 
| Read-write access to sub-matrices: | 
  | \code mat1.block(i,j,rows,cols)\endcode
      \link DenseBase::block(Index,Index,Index,Index) (more) \endlink | \code mat1.block(i,j)\endcode
      \link DenseBase::block(Index,Index) (more) \endlink | the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j) | 
| \code
 mat1.topLeftCorner(rows,cols)
 mat1.topRightCorner(rows,cols)
 mat1.bottomLeftCorner(rows,cols)
 mat1.bottomRightCorner(rows,cols)\endcode | \code
 mat1.topLeftCorner()
 mat1.topRightCorner()
 mat1.bottomLeftCorner()
 mat1.bottomRightCorner()\endcode | the \c rows x \c cols sub-matrix \n taken in one of the four corners |  | 
 | \code
 mat1.topRows(rows)
 mat1.bottomRows(rows)
 mat1.leftCols(cols)
 mat1.rightCols(cols)\endcode | \code
 mat1.topRows()
 mat1.bottomRows()
 mat1.leftCols()
 mat1.rightCols()\endcode | specialized versions of block() \n when the block fit two corners |  |