From fa0ad07f8d429627b173993f80975360a12fb2d0 Mon Sep 17 00:00:00 2001 From: TimQu Date: Wed, 9 Sep 2020 10:33:09 +0200 Subject: [PATCH] Added preprocessing of multi-objective lra formulas --- .../SparseMultiObjectivePreprocessor.cpp | 44 +++++++++++++++++++ .../SparseMultiObjectivePreprocessor.h | 3 +- 2 files changed, 46 insertions(+), 1 deletion(-) diff --git a/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.cpp b/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.cpp index 294a598ae..80d5f5f6b 100644 --- a/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.cpp +++ b/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.cpp @@ -169,6 +169,12 @@ namespace storm { auto rewardModel = storm::utility::createFilteredRewardModel(baseRewardModel, model->isDiscreteTimeModel(), pathFormula.asTotalRewardFormula()); storm::storage::BitVector statesWithoutReward = rewardModel.get().getStatesWithZeroReward(model->getTransitionMatrix()); absorbingStatesForSubformula = storm::utility::graph::performProb0A(backwardTransitions, statesWithoutReward, ~statesWithoutReward); + } else if (pathFormula.isLongRunAverageRewardFormula()) { + auto rewardModel = storm::utility::createFilteredRewardModel(baseRewardModel, model->isDiscreteTimeModel(), pathFormula.asLongRunAverageRewardFormula()); + storm::storage::BitVector statesWithoutReward = rewardModel.get().getStatesWithZeroReward(model->getTransitionMatrix()); + // Compute Sat(Forall F (Forall G "statesWithoutReward")) + auto forallGloballyStatesWithoutReward = storm::utility::graph::performProb0A(backwardTransitions, statesWithoutReward, ~statesWithoutReward); + absorbingStatesForSubformula = storm::utility::graph::performProb1A(model->getTransitionMatrix(), model->getNondeterministicChoiceIndices(), backwardTransitions, storm::storage::BitVector(model->getNumberOfStates(), true), forallGloballyStatesWithoutReward); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << pathFormula << " is not supported."); } @@ -179,6 +185,11 @@ namespace storm { } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << pathFormula << " is not supported."); } + } else if (opFormula->isLongRunAverageRewardFormula()) { + auto lraStates = mc.check(pathFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); + // Compute Sat(Forall F (Forall G not "lraStates")) + auto forallGloballyNotLraStates = storm::utility::graph::performProb0A(backwardTransitions, ~lraStates, lraStates); + absorbingStatesForSubformula = storm::utility::graph::performProb1A(model->getTransitionMatrix(), model->getNondeterministicChoiceIndices(), backwardTransitions, storm::storage::BitVector(model->getNumberOfStates(), true), forallGloballyNotLraStates); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *opFormula << " of " << originalFormula << " because it is not supported"); } @@ -288,6 +299,8 @@ namespace storm { preprocessRewardOperatorFormula(formula.asRewardOperatorFormula(), opInfo, data); } else if (formula.isTimeOperatorFormula()){ preprocessTimeOperatorFormula(formula.asTimeOperatorFormula(), opInfo, data); + } else if (formula.isLongRunAverageOperatorFormula()) { + preprocessLongRunAverageOperatorFormula(formula.asLongRunAverageOperatorFormula(), opInfo, data); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the objective " << formula << " because it is not supported"); } @@ -336,6 +349,8 @@ namespace storm { preprocessCumulativeRewardFormula(formula.getSubformula().asCumulativeRewardFormula(), opInfo, data, rewardModelName); } else if (formula.getSubformula().isTotalRewardFormula()) { preprocessTotalRewardFormula(opInfo, data, rewardModelName); + } else if (formula.getSubformula().isLongRunAverageRewardFormula()) { + preprocessLongRunAverageRewardFormula(opInfo, data, rewardModelName); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); } @@ -354,6 +369,28 @@ namespace storm { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); } } + + template + void SparseMultiObjectivePreprocessor::preprocessLongRunAverageOperatorFormula(storm::logic::LongRunAverageOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data) { + + data.objectives.back()->lowerResultBound = storm::utility::zero(); + data.objectives.back()->upperResultBound = storm::utility::one(); + + // Convert to a long run average reward formula + // Create and add the new formula + std::string rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size()); + auto lraRewardFormula = std::make_shared(); + data.objectives.back()->formula = std::make_shared(lraRewardFormula, rewardModelName, opInfo); + + // Create and add the new reward model that only gives one reward for goal states + storm::modelchecker::SparsePropositionalModelChecker mc(*data.model); + storm::storage::BitVector subFormulaResult = mc.check(formula.getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector(); + std::vector lraRewards(data.model->getNumberOfStates(), storm::utility::zero()); + storm::utility::vector::setVectorValues(lraRewards, subFormulaResult, storm::utility::one()); + data.model->addRewardModel(rewardModelName, typename SparseModelType::RewardModelType(std::move(lraRewards))); + + + } template void SparseMultiObjectivePreprocessor::preprocessUntilFormula(storm::logic::UntilFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, std::shared_ptr subformula) { @@ -548,6 +585,13 @@ namespace storm { data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true); } + template + void SparseMultiObjectivePreprocessor::preprocessLongRunAverageRewardFormula(storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional const& optionalRewardModelName) { + + auto longRunAverageRewardFormula = std::make_shared(); + data.objectives.back()->formula = std::make_shared(longRunAverageRewardFormula, *optionalRewardModelName, opInfo); + } + template typename SparseMultiObjectivePreprocessor::ReturnType SparseMultiObjectivePreprocessor::buildResult(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula, PreprocessorData& data) { ReturnType result(originalFormula, originalModel); diff --git a/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.h b/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.h index 67f65b20a..7141bc80a 100644 --- a/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.h +++ b/src/storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectivePreprocessor.h @@ -69,13 +69,14 @@ namespace storm { static void preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); static void preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); static void preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); + static void preprocessLongRunAverageOperatorFormula(storm::logic::LongRunAverageOperatorFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); static void preprocessUntilFormula(storm::logic::UntilFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, std::shared_ptr subformula = nullptr); static void preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); static void preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data); static void preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional const& optionalRewardModelName = boost::none); static void preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional const& optionalRewardModelName = boost::none); static void preprocessTotalRewardFormula(storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional const& optionalRewardModelName = boost::none); // The total reward formula itself does not need to be provided as it is unique. - + static void preprocessLongRunAverageRewardFormula(storm::logic::OperatorInformation const& opInfo, PreprocessorData& data, boost::optional const& optionalRewardModelName = boost::none); // The long run average reward formula itself does not need to be provided as it is unique. /*! * Builds the result from preprocessing