diff --git a/src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.cpp b/src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.cpp index 8eab0bca0..3ff9611da 100644 --- a/src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.cpp +++ b/src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.cpp @@ -78,7 +78,7 @@ namespace storm { actionRewardsGetter = [&] (uint64_t globalChoiceIndex) { return rewardModel.getStateActionReward(globalChoiceIndex); }; } } else { - stateRewardsGetter = [] (uint64_t) { return storm::utility::zero(); }; + actionRewardsGetter = [] (uint64_t) { return storm::utility::zero(); }; } return computeLongRunAverageValues(env, stateRewardsGetter, actionRewardsGetter); @@ -109,7 +109,7 @@ namespace storm { // We will compute the long run average value for each MEC individually and then set-up an Equation system to compute the value also at non-mec states. // For a description of this approach see, e.g., Guck et al.: Modelling and Analysis of Markov Reward Automata (ATVA'14), https://doi.org/10.1007/978-3-319-11936-6_13 - // Prepare an environment for the underlying solvers + // Prepare an environment for the underlying solvers. auto underlyingSolverEnvironment = env; if (env.solver().isForceSoundness()) { // For sound computations, the error in the MECS plus the error in the remaining system should not exceed the user defined precsion. @@ -151,10 +151,10 @@ namespace storm { template class SparseInfiniteHorizonHelper; template class SparseInfiniteHorizonHelper; - template class SparseInfiniteHorizonHelper; template class SparseInfiniteHorizonHelper; template class SparseInfiniteHorizonHelper; + template class SparseInfiniteHorizonHelper; } }