TimQu
8 years ago
5 changed files with 800 additions and 0 deletions
-
64src/storm/modelchecker/multiobjective/Objective.h
-
448src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp
-
84src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h
-
73src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorReturnType.h
-
131src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorTask.h
@ -0,0 +1,64 @@ |
|||
#pragma once |
|||
|
|||
#include <boost/optional.hpp> |
|||
|
|||
#include "storm/logic/Formula.h" |
|||
#include "storm/logic/Bound.h" |
|||
#include "storm/logic/TimeBound.h" |
|||
#include "storm/solver/OptimizationDirection.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
template <typename ValueType> |
|||
struct Objective { |
|||
// the original input formula |
|||
std::shared_ptr<storm::logic::Formula const> originalFormula; |
|||
|
|||
// the name of the considered reward model in the preprocessedModel |
|||
boost::optional<std::string> rewardModelName; |
|||
|
|||
// True iff the complementary event is considered. |
|||
// E.g. if we consider P<1-t [F !"safe"] instead of P>=t [ G "safe"] |
|||
bool considersComplementaryEvent; |
|||
|
|||
// The probability/reward threshold for the preprocessed model (if originalFormula specifies one). |
|||
boost::optional<storm::logic::Bound> bound; |
|||
// The optimization direction for the preprocessed model |
|||
// if originalFormula does ot specifies one, the direction is derived from the bound. |
|||
storm::solver::OptimizationDirection optimizationDirection; |
|||
|
|||
// Lower and upper time/step bouds |
|||
boost::optional<storm::logic::TimeBound> lowerTimeBound, upperTimeBound; |
|||
|
|||
void printToStream(std::ostream& out) const { |
|||
out << originalFormula->toString(); |
|||
out << " \t"; |
|||
out << "direction: "; |
|||
out << optimizationDirection; |
|||
out << " \t"; |
|||
out << "intern bound: "; |
|||
if (bound){ |
|||
out << bound; |
|||
} else { |
|||
out << " -none- "; |
|||
} |
|||
out << " \t"; |
|||
out << "time bounds: "; |
|||
if (lowerTimeBound && upperTimeBound) { |
|||
out << (lowerTimeBound->isStrict() ? "(" : "[") << lowerTimeBound->getBound() << "," << upperTimeBound->getBound() << (upperTimeBound->isStrict() ? ")" : "]"); |
|||
} else if (lowerTimeBound) { |
|||
out << (lowerTimeBound->isStrict() ? ">" : ">=") << lowerTimeBound->getBound(); |
|||
} else if (upperTimeBound) { |
|||
out << (upperTimeBound->isStrict() ? "<" : "<=") << upperTimeBound->getBound(); |
|||
} else { |
|||
out << " -none- "; |
|||
} |
|||
out << " \t"; |
|||
out << "intern reward model: " << *rewardModelName; |
|||
} |
|||
}; |
|||
} |
|||
} |
|||
} |
|||
|
@ -0,0 +1,448 @@ |
|||
#include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h"
|
|||
|
|||
#include <algorithm>
|
|||
#include <storm/transformer/GoalStateMerger.h>
|
|||
|
|||
#include "storm/models/sparse/Mdp.h"
|
|||
#include "storm/models/sparse/MarkovAutomaton.h"
|
|||
#include "storm/models/sparse/StandardRewardModel.h"
|
|||
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
|
|||
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
|
|||
#include "storm/storage/MaximalEndComponentDecomposition.h"
|
|||
#include "storm/storage/memorystructure/MemoryStructureBuilder.h"
|
|||
#include "storm/storage/memorystructure/SparseModelMemoryProduct.h"
|
|||
#include "storm/storage/expressions/ExpressionManager.h"
|
|||
#include "storm/transformer/SubsystemBuilder.h"
|
|||
#include "storm/utility/macros.h"
|
|||
#include "storm/utility/vector.h"
|
|||
#include "storm/utility/graph.h"
|
|||
#include "storm/utility/endComponents.h"
|
|||
|
|||
#include "storm/exceptions/InvalidPropertyException.h"
|
|||
#include "storm/exceptions/UnexpectedException.h"
|
|||
#include "storm/exceptions/NotImplementedException.h"
|
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
template<typename SparseModelType> |
|||
typename SparseMultiObjectivePreprocessor<SparseModelType>::ReturnType SparseMultiObjectivePreprocessor<SparseModelType>::preprocess(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula) { |
|||
|
|||
PreprocessorData data(originalModel); |
|||
|
|||
//Invoke preprocessing on the individual objectives
|
|||
for (auto const& subFormula : originalFormula.getSubformulas()) { |
|||
STORM_LOG_INFO("Preprocessing objective " << *subFormula<< "."); |
|||
data.objectives.push_back(std::make_shared<Objective<ValueType>>()); |
|||
data.objectives.back()->originalFormula = subFormula; |
|||
data.finiteRewardCheckObjectives.resize(data.objectives.size(), false); |
|||
if (data.objectives.back()->originalFormula->isOperatorFormula()) { |
|||
preprocessOperatorFormula(data.objectives.back()->originalFormula->asOperatorFormula(), data); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *subFormula << " of " << originalFormula << " because it is not supported"); |
|||
} |
|||
} |
|||
|
|||
storm::storage::SparseModelMemoryProduct<ValueType> product = data.memory->product(originalModel); |
|||
std::shared_ptr<SparseModelType> preprocessedModel = std::dynamic_pointer_cast<SparseModelType>(product.build()); |
|||
|
|||
auto backwardTransitions = preprocessedModel->getBackwardTransitions(); |
|||
|
|||
bool endComponentAnalysisRequired = false; |
|||
for (auto& task : data.tasks) { |
|||
endComponentAnalysisRequired = endComponentAnalysisRequired || task->requiresEndComponentAnalysis(); |
|||
} |
|||
if (endComponentAnalysisRequired) { |
|||
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "End component analysis required but currently not implemented."); |
|||
} |
|||
|
|||
for (auto& task : data.tasks) { |
|||
task->perform(*preprocessedModel); |
|||
} |
|||
|
|||
ReturnType result(originalFormula, originalModel); |
|||
for (auto& obj : data.objectives) { |
|||
result.objectives.push_back(std::move(*obj)); |
|||
} |
|||
result.preprocessedModel = std::move(preprocessedModel); |
|||
result.queryType = ReturnType::QueryType::Achievability; |
|||
|
|||
auto minMaxNonZeroRewardStates = getStatesWithNonZeroRewardMinMax(result, backwardTransitions); |
|||
auto finiteRewardStates = ensureRewardFiniteness(result, data.finiteRewardCheckObjectives, minMaxNonZeroRewardStates.first, backwardTransitions); |
|||
|
|||
std::set<std::string> relevantRewardModels; |
|||
for (auto const& obj : result.objectives) { |
|||
relevantRewardModels.insert(*obj.rewardModelName); |
|||
} |
|||
|
|||
// Build a subsystem that discards states that yield infinite reward for all schedulers.
|
|||
// We can also merge the states that will have reward zero anyway.
|
|||
storm::storage::BitVector zeroRewardStates = ~minMaxNonZeroRewardStates.second; |
|||
storm::transformer::GoalStateMerger<SparseModelType> merger(*result.preprocessedModel); |
|||
typename storm::transformer::GoalStateMerger<SparseModelType>::ReturnType mergerResult = merger.mergeTargetAndSinkStates(finiteRewardStates, zeroRewardStates, storm::storage::BitVector(finiteRewardStates.size(), false), std::vector<std::string>(relevantRewardModels.begin(), relevantRewardModels.end())); |
|||
|
|||
result.preprocessedModel = mergerResult.model; |
|||
result.possibleBottomStates = (~minMaxNonZeroRewardStates.first) % finiteRewardStates; |
|||
if (mergerResult.targetState) { |
|||
storm::storage::BitVector targetStateAsVector(result.preprocessedModel->getNumberOfStates(), false); |
|||
targetStateAsVector.set(*mergerResult.targetState, true); |
|||
result.possibleECChoices = storm::utility::graph::performProb0E(*result.preprocessedModel, result.preprocessedModel->getBackwardTransitions(), storm::storage::BitVector(targetStateAsVector.size(), true), targetStateAsVector); |
|||
result.possibleECChoices.set(result.preprocessedModel->getTransitionMatrix().getRowGroupIndices()[*mergerResult.targetState], true); |
|||
// There is an additional state in the result
|
|||
result.possibleBottomStates.resize(result.possibleBottomStates.size() + 1, true); |
|||
} |
|||
assert(result.possibleBottomStates.size() == result.preprocessedModel->getNumberOfStates()); |
|||
|
|||
|
|||
return result; |
|||
} |
|||
|
|||
template <typename SparseModelType> |
|||
SparseMultiObjectivePreprocessor<SparseModelType>::PreprocessorData::PreprocessorData(SparseModelType const& model) : originalModel(model) { |
|||
storm::storage::MemoryStructureBuilder memoryBuilder(1); |
|||
memoryBuilder.setTransition(0,0, storm::logic::Formula::getTrueFormula()); |
|||
memory = std::make_shared<storm::storage::MemoryStructure>(memoryBuilder.build()); |
|||
|
|||
// The memoryLabelPrefix should not be a prefix of a state label of the given model to ensure uniqueness of label names
|
|||
memoryLabelPrefix = "mem"; |
|||
while (true) { |
|||
bool prefixIsUnique = true; |
|||
for (auto const& label : originalModel.getStateLabeling().getLabels()) { |
|||
if (memoryLabelPrefix.size() <= label.size()) { |
|||
if (std::mismatch(memoryLabelPrefix.begin(), memoryLabelPrefix.end(), label.begin()).first == memoryLabelPrefix.end()) { |
|||
prefixIsUnique = false; |
|||
memoryLabelPrefix = "_" + memoryLabelPrefix; |
|||
break; |
|||
} |
|||
} |
|||
} |
|||
if (prefixIsUnique) { |
|||
break; |
|||
} |
|||
} |
|||
|
|||
// The rewardModelNamePrefix should not be a prefix of a reward model name of the given model to ensure uniqueness of reward model names
|
|||
rewardModelNamePrefix = "obj"; |
|||
while (true) { |
|||
bool prefixIsUnique = true; |
|||
for (auto const& label : originalModel.getStateLabeling().getLabels()) { |
|||
if (memoryLabelPrefix.size() <= label.size()) { |
|||
if (std::mismatch(memoryLabelPrefix.begin(), memoryLabelPrefix.end(), label.begin()).first == memoryLabelPrefix.end()) { |
|||
prefixIsUnique = false; |
|||
memoryLabelPrefix = "_" + memoryLabelPrefix; |
|||
break; |
|||
} |
|||
} |
|||
} |
|||
if (prefixIsUnique) { |
|||
break; |
|||
} |
|||
} |
|||
|
|||
|
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessOperatorFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data) { |
|||
|
|||
Objective<ValueType>& objective = *data.objectives.back(); |
|||
|
|||
objective.considersComplementaryEvent = false; |
|||
|
|||
if (formula.hasBound()) { |
|||
STORM_LOG_THROW(!formula.getBound().threshold.containsVariables(), storm::exceptions::InvalidPropertyException, "The formula " << formula << "considers a non-constant threshold"); |
|||
objective.bound = formula.getBound(); |
|||
if (storm::logic::isLowerBound(formula.getBound().comparisonType)) { |
|||
objective.optimizationDirection = storm::solver::OptimizationDirection::Maximize; |
|||
} else { |
|||
objective.optimizationDirection = storm::solver::OptimizationDirection::Minimize; |
|||
} |
|||
STORM_LOG_WARN_COND(!formula.hasOptimalityType() || formula.getOptimalityType() == objective.optimizationDirection, "Optimization direction of formula " << formula << " ignored as the formula also specifies a threshold."); |
|||
} else if (formula.hasOptimalityType()){ |
|||
objective.optimizationDirection = formula.getOptimalityType(); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << formula << " does not specify whether to minimize or maximize"); |
|||
} |
|||
|
|||
if (formula.isProbabilityOperatorFormula()){ |
|||
preprocessProbabilityOperatorFormula(formula.asProbabilityOperatorFormula(), data); |
|||
} else if (formula.isRewardOperatorFormula()){ |
|||
preprocessRewardOperatorFormula(formula.asRewardOperatorFormula(), data); |
|||
} else if (formula.isTimeOperatorFormula()){ |
|||
preprocessTimeOperatorFormula(formula.asTimeOperatorFormula(), data); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the objective " << formula << " because it is not supported"); |
|||
} |
|||
|
|||
// Invert the bound and optimization direction (if necessary)
|
|||
if (objective.considersComplementaryEvent) { |
|||
if (objective.bound) { |
|||
objective.bound->threshold = objective.bound->threshold.getManager().rational(storm::utility::one<storm::RationalNumber>()) - objective.bound->threshold; |
|||
objective.bound->comparisonType = storm::logic::invert(objective.bound->comparisonType); |
|||
} |
|||
objective.optimizationDirection = storm::solver::invert(objective.optimizationDirection); |
|||
} |
|||
|
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data) { |
|||
|
|||
if (formula.getSubformula().isUntilFormula()){ |
|||
preprocessUntilFormula(formula.getSubformula().asUntilFormula(), data); |
|||
} else if (formula.getSubformula().isBoundedUntilFormula()){ |
|||
preprocessBoundedUntilFormula(formula.getSubformula().asBoundedUntilFormula(), data); |
|||
} else if (formula.getSubformula().isGloballyFormula()){ |
|||
preprocessGloballyFormula(formula.getSubformula().asGloballyFormula(), data); |
|||
} else if (formula.getSubformula().isEventuallyFormula()){ |
|||
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); |
|||
} |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, PreprocessorData& data) { |
|||
|
|||
STORM_LOG_THROW((formula.hasRewardModelName() && data.originalModel.hasRewardModel(formula.getRewardModelName())) |
|||
|| (!formula.hasRewardModelName() && data.originalModel.hasUniqueRewardModel()), storm::exceptions::InvalidPropertyException, "The reward model is not unique or the formula " << formula << " does not specify an existing reward model."); |
|||
|
|||
std::string rewardModelName; |
|||
if (formula.hasRewardModelName()) { |
|||
rewardModelName = formula.getRewardModelName(); |
|||
STORM_LOG_THROW(data.originalModel.hasRewardModel(rewardModelName), storm::exceptions::InvalidPropertyException, "The reward model specified by formula " << formula << " does not exist in the model"); |
|||
} else { |
|||
STORM_LOG_THROW(data.originalModel.hasUniqueRewardModel(), storm::exceptions::InvalidOperationException, "The formula " << formula << " does not specify a reward model name and the reward model is not unique."); |
|||
rewardModelName = data.originalModel.getRewardModels().begin()->first; |
|||
} |
|||
|
|||
if (formula.getSubformula().isEventuallyFormula()){ |
|||
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data, rewardModelName); |
|||
} else if (formula.getSubformula().isCumulativeRewardFormula()) { |
|||
preprocessCumulativeRewardFormula(formula.getSubformula().asCumulativeRewardFormula(), data, rewardModelName); |
|||
} else if (formula.getSubformula().isTotalRewardFormula()) { |
|||
preprocessTotalRewardFormula(data, rewardModelName); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); |
|||
} |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, PreprocessorData& data) { |
|||
// Time formulas are only supported for Markov automata
|
|||
STORM_LOG_THROW(data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton), storm::exceptions::InvalidPropertyException, "Time operator formulas are only supported for Markov automata."); |
|||
|
|||
if (formula.getSubformula().isEventuallyFormula()){ |
|||
preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); |
|||
} |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessUntilFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data) { |
|||
|
|||
// Check if the formula is already satisfied in the initial state because then the transformation to expected rewards will fail.
|
|||
if (!data.objectives.back()->lowerTimeBound) { |
|||
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(data.originalModel); |
|||
if (!(data.originalModel.getInitialStates() & mc.check(formula.getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()).empty()) { |
|||
// TODO: Handle this case more properly
|
|||
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "The Probability for the objective " << *data.objectives.back()->originalFormula << " is always one as the rhs of the until formula is true in the initial state. This (trivial) case is currently not implemented."); |
|||
} |
|||
} |
|||
|
|||
// Create a memory structure that stores whether a non-PhiState or a PsiState has already been reached
|
|||
storm::storage::MemoryStructureBuilder builder(2); |
|||
std::string relevantStatesLabel = data.memoryLabelPrefix + "_obj" + std::to_string(data.objectives.size()) + "_relevant"; |
|||
builder.setLabel(0, relevantStatesLabel); |
|||
auto negatedLeftSubFormula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getLeftSubformula().asSharedPointer()); |
|||
auto targetFormula = std::make_shared<storm::logic::BinaryBooleanStateFormula>(storm::logic::BinaryBooleanStateFormula::OperatorType::Or, negatedLeftSubFormula, formula.getRightSubformula().asSharedPointer()); |
|||
builder.setTransition(0, 0, std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, targetFormula)); |
|||
builder.setTransition(0, 1, targetFormula); |
|||
builder.setTransition(1, 1, storm::logic::Formula::getTrueFormula()); |
|||
storm::storage::MemoryStructure objectiveMemory = builder.build(); |
|||
data.memory = std::make_shared<storm::storage::MemoryStructure>(data.memory->product(objectiveMemory)); |
|||
|
|||
data.objectives.back()->rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size()); |
|||
|
|||
auto relevantStatesFormula = std::make_shared<storm::logic::AtomicLabelFormula>(relevantStatesLabel); |
|||
data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachProbToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula, formula.getRightSubformula().asSharedPointer())); |
|||
|
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data) { |
|||
STORM_LOG_THROW(!data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) || !formula.isStepBounded(), storm::exceptions::InvalidPropertyException, "Multi-objective model checking currently does not support STEP-bounded properties for Markov automata."); |
|||
|
|||
if (formula.hasLowerBound()) { |
|||
STORM_LOG_THROW(!formula.getLowerBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The lower time bound for the formula " << formula << " still contains variables"); |
|||
if (!storm::utility::isZero(formula.getLowerBound<double>()) || formula.isLowerBoundStrict()) { |
|||
data.objectives.back()->lowerTimeBound = storm::logic::TimeBound(formula.isLowerBoundStrict(), formula.getLowerBound()); |
|||
} |
|||
} |
|||
if (formula.hasUpperBound()) { |
|||
STORM_LOG_THROW(!formula.getUpperBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The Upper time bound for the formula " << formula << " still contains variables"); |
|||
if (!storm::utility::isInfinity(formula.getUpperBound<double>())) { |
|||
data.objectives.back()->upperTimeBound = storm::logic::TimeBound(formula.isUpperBoundStrict(), formula.getUpperBound()); |
|||
} |
|||
} |
|||
preprocessUntilFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data); |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data) { |
|||
// The formula will be transformed to an until formula for the complementary event.
|
|||
data.objectives.back()->considersComplementaryEvent = true; |
|||
|
|||
auto negatedSubformula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer()); |
|||
|
|||
preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), data); |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { |
|||
if (formula.isReachabilityProbabilityFormula()){ |
|||
preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), data); |
|||
return; |
|||
} |
|||
|
|||
// Create a memory structure that stores whether a target state has already been reached
|
|||
storm::storage::MemoryStructureBuilder builder(2); |
|||
// Get a unique label that is not already present in the model
|
|||
std::string relevantStatesLabel = data.memoryLabelPrefix + "_obj" + std::to_string(data.objectives.size()) + "_relevant"; |
|||
builder.setLabel(0, relevantStatesLabel); |
|||
builder.setTransition(0, 0, std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer())); |
|||
builder.setTransition(0, 1, formula.getSubformula().asSharedPointer()); |
|||
builder.setTransition(1, 1, std::make_shared<storm::logic::BooleanLiteralFormula>(true)); |
|||
storm::storage::MemoryStructure objectiveMemory = builder.build(); |
|||
data.memory = std::make_shared<storm::storage::MemoryStructure>(data.memory->product(objectiveMemory)); |
|||
|
|||
auto relevantStatesFormula = std::make_shared<storm::logic::AtomicLabelFormula>(relevantStatesLabel); |
|||
|
|||
data.objectives.back()->rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size()); |
|||
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true); |
|||
|
|||
if (formula.isReachabilityRewardFormula()) { |
|||
assert(optionalRewardModelName.is_initialized()); |
|||
data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachRewToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula, optionalRewardModelName.get())); |
|||
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1); |
|||
} else if (formula.isReachabilityTimeFormula() && data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton)) { |
|||
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1); |
|||
data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachTimeToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula)); |
|||
} else { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) ? "nor reachability time" : "") << ". This is not supported."); |
|||
} |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { |
|||
STORM_LOG_THROW(data.originalModel.isOfType(storm::models::ModelType::Mdp), storm::exceptions::InvalidPropertyException, "Cumulative reward formulas are not supported for the given model type."); |
|||
|
|||
STORM_LOG_THROW(!formula.getBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The time bound for the formula " << formula << " still contains variables"); |
|||
if (!storm::utility::isInfinity(formula.getBound<double>())) { |
|||
data.objectives.back()->upperTimeBound = storm::logic::TimeBound(formula.isBoundStrict(), formula.getBound()); |
|||
} |
|||
|
|||
|
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTotalRewardFormula(PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { |
|||
assert(optionalRewardModelName.is_initialized()); |
|||
data.objectives.back()->rewardModelName = *optionalRewardModelName; |
|||
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true); |
|||
} |
|||
|
|||
|
|||
template<typename SparseModelType> |
|||
std::pair<storm::storage::BitVector, storm::storage::BitVector> SparseMultiObjectivePreprocessor<SparseModelType>::getStatesWithNonZeroRewardMinMax(ReturnType& result, storm::storage::SparseMatrix<ValueType> const& backwardTransitions) { |
|||
|
|||
uint_fast64_t stateCount = result.preprocessedModel->getNumberOfStates(); |
|||
auto const& transitions = result.preprocessedModel->getTransitionMatrix(); |
|||
std::vector<uint_fast64_t> const& groupIndices = transitions.getRowGroupIndices(); |
|||
storm::storage::BitVector allStates(stateCount, true); |
|||
|
|||
// Get the choices that yield non-zero reward
|
|||
storm::storage::BitVector zeroRewardChoices(result.preprocessedModel->getNumberOfChoices(), true); |
|||
for (auto const& obj : result.objectives) { |
|||
auto const& rewModel = result.preprocessedModel->getRewardModel(*obj.rewardModelName); |
|||
zeroRewardChoices &= rewModel.getChoicesWithZeroReward(transitions); |
|||
} |
|||
|
|||
// Get the states that have reward for at least one (or for all) choices assigned to it.
|
|||
storm::storage::BitVector statesWithRewardForOneChoice = storm::storage::BitVector(stateCount, false); |
|||
storm::storage::BitVector statesWithRewardForAllChoices = storm::storage::BitVector(stateCount, true); |
|||
for (uint_fast64_t state = 0; state < stateCount; ++state) { |
|||
bool stateHasChoiceWithReward = false; |
|||
bool stateHasChoiceWithoutReward = false; |
|||
uint_fast64_t const& groupEnd = groupIndices[state + 1]; |
|||
for (uint_fast64_t choice = groupIndices[state]; choice < groupEnd; ++choice) { |
|||
if (zeroRewardChoices.get(choice)) { |
|||
stateHasChoiceWithoutReward = true; |
|||
} else { |
|||
stateHasChoiceWithReward = true; |
|||
} |
|||
} |
|||
if (stateHasChoiceWithReward) { |
|||
statesWithRewardForOneChoice.set(state, true); |
|||
} |
|||
if (stateHasChoiceWithoutReward) { |
|||
statesWithRewardForAllChoices.set(state, false); |
|||
} |
|||
} |
|||
|
|||
// get the states from which the minimal/maximal expected reward is always non-zero
|
|||
storm::storage::BitVector minStates = storm::utility::graph::performProbGreater0A(transitions, groupIndices, backwardTransitions, allStates, statesWithRewardForAllChoices, false, 0, zeroRewardChoices); |
|||
storm::storage::BitVector maxStates = storm::utility::graph::performProbGreater0E(backwardTransitions, allStates, statesWithRewardForOneChoice); |
|||
STORM_LOG_ASSERT(minStates.isSubsetOf(maxStates), "The computed set of states with minimal non-zero expected rewards is not a subset of the states with maximal non-zero rewards."); |
|||
return std::make_pair(std::move(minStates), std::move(maxStates)); |
|||
} |
|||
|
|||
template<typename SparseModelType> |
|||
storm::storage::BitVector SparseMultiObjectivePreprocessor<SparseModelType>::ensureRewardFiniteness(ReturnType& result, storm::storage::BitVector const& finiteRewardCheckObjectives, storm::storage::BitVector const& nonZeroRewardMin, storm::storage::SparseMatrix<ValueType> const& backwardTransitions) { |
|||
|
|||
auto const& transitions = result.preprocessedModel->getTransitionMatrix(); |
|||
std::vector<uint_fast64_t> const& groupIndices = transitions.getRowGroupIndices(); |
|||
|
|||
storm::storage::BitVector maxRewardsToCheck(result.preprocessedModel->getNumberOfChoices(), true); |
|||
bool hasMinRewardToCheck; |
|||
for (auto const& objIndex : finiteRewardCheckObjectives) { |
|||
auto const& rewModel = result.preprocessedModel->getRewardModel(result.objectives[objIndex].rewardModelName.get()); |
|||
if (storm::solver::minimize(result.objectives[objIndex].optimizationDirection)) { |
|||
hasMinRewardToCheck = true; |
|||
} else { |
|||
maxRewardsToCheck &= rewModel.getChoicesWithZeroReward(transitions); |
|||
} |
|||
} |
|||
maxRewardsToCheck.complement(); |
|||
|
|||
// Assert reward finitiness for maximizing objectives under all schedulers
|
|||
storm::storage::BitVector allStates(result.preprocessedModel->getNumberOfStates(), true); |
|||
if (storm::utility::endComponents::checkIfECWithChoiceExists(transitions, backwardTransitions, allStates, maxRewardsToCheck)) { |
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "At least one of the maximizing objectives induces infinite expected reward (or time). This is not supported"); |
|||
} |
|||
|
|||
// Assert that there is one scheduler under which all rewards are finite.
|
|||
// This only has to be done if there are minimizing expected rewards that potentially can be infinite
|
|||
storm::storage::BitVector finiteRewardStates; |
|||
if (hasMinRewardToCheck) { |
|||
finiteRewardStates = storm::utility::graph::performProb1E(transitions, groupIndices, backwardTransitions, allStates, ~nonZeroRewardMin); |
|||
if ((finiteRewardStates & result.preprocessedModel->getInitialStates()).empty()) { |
|||
// There is no scheduler that induces finite reward for the initial state
|
|||
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "For every scheduler, at least one objective gets infinite reward."); |
|||
} |
|||
} else { |
|||
finiteRewardStates = allStates; |
|||
} |
|||
return finiteRewardStates; |
|||
} |
|||
|
|||
template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<double>>; |
|||
template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<double>>; |
|||
|
|||
template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<storm::RationalNumber>>; |
|||
template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>; |
|||
} |
|||
} |
|||
} |
@ -0,0 +1,84 @@ |
|||
#pragma once |
|||
|
|||
#include <memory> |
|||
#include <string> |
|||
|
|||
#include "storm/logic/Formulas.h" |
|||
#include "storm/storage/BitVector.h" |
|||
#include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorReturnType.h" |
|||
#include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorTask.h" |
|||
#include "storm/storage/memorystructure/MemoryStructure.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
/* |
|||
* This class invokes the necessary preprocessing for the constraint based multi-objective model checking algorithm |
|||
*/ |
|||
template <class SparseModelType> |
|||
class SparseMultiObjectivePreprocessor { |
|||
public: |
|||
typedef typename SparseModelType::ValueType ValueType; |
|||
typedef typename SparseModelType::RewardModelType RewardModelType; |
|||
typedef SparseMultiObjectivePreprocessorReturnType<SparseModelType> ReturnType; |
|||
|
|||
/*! |
|||
* Preprocesses the given model w.r.t. the given formulas |
|||
* @param originalModel The considered model |
|||
* @param originalFormula the considered formula. The subformulas should only contain one OperatorFormula at top level. |
|||
*/ |
|||
static ReturnType preprocess(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula); |
|||
|
|||
private: |
|||
|
|||
struct PreprocessorData { |
|||
SparseModelType const& originalModel; |
|||
std::vector<std::shared_ptr<CbObjective<ValueType>>> objectives; |
|||
std::vector<std::shared_ptr<SparseMultiObjectivePreprocessorTask<SparseModelType>>> tasks; |
|||
std::shared_ptr<storm::storage::MemoryStructure> memory; |
|||
|
|||
// Indices of the objectives that require a check for finite reward |
|||
storm::storage::BitVector finiteRewardCheckObjectives; |
|||
|
|||
std::string memoryLabelPrefix; |
|||
std::string rewardModelNamePrefix; |
|||
|
|||
PreprocessorData(SparseModelType const& model); |
|||
}; |
|||
|
|||
/*! |
|||
* Apply the neccessary preprocessing for the given formula. |
|||
* @param formula the current (sub)formula |
|||
* @param data the current data. The currently processed objective is located at data.objectives.back() |
|||
* @param optionalRewardModelName the reward model name that is considered for the formula (if available) |
|||
*/ |
|||
static void preprocessOperatorFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data); |
|||
static void preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data); |
|||
static void preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, PreprocessorData& data); |
|||
static void preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, PreprocessorData& data); |
|||
static void preprocessUntilFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data); |
|||
static void preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data); |
|||
static void preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data); |
|||
static void preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); |
|||
static void preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); |
|||
static void preprocessTotalRewardFormula(PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); // The total reward formula itself does not need to be provided as it is unique. |
|||
|
|||
|
|||
/*! |
|||
* Computes the set of states that have a non-zero reward w.r.t. all objectives, assuming that the objectives are all minimizing and maximizing, respectively. |
|||
*/ |
|||
static std::pair<storm::storage::BitVector, storm::storage::BitVector> getStatesWithNonZeroRewardMinMax(ReturnType& result, storm::storage::SparseMatrix<ValueType> const& backwardTransitions); |
|||
|
|||
|
|||
/*! |
|||
* Checks whether the occurring expected rewards are finite. If not, the input is rejected. |
|||
* Returns the set of states for which a scheduler exists that induces finite reward for all objectives |
|||
*/ |
|||
static storm::storage::BitVector ensureRewardFiniteness(ReturnType& result, storm::storage::BitVector const& finiteRewardCheckObjectives, storm::storage::BitVector const& nonZeroRewardMin, storm::storage::SparseMatrix<ValueType> const& backwardTransitions); |
|||
|
|||
}; |
|||
} |
|||
} |
|||
} |
|||
|
@ -0,0 +1,73 @@ |
|||
#pragma once |
|||
|
|||
#include <vector> |
|||
#include <memory> |
|||
#include <boost/optional.hpp> |
|||
|
|||
#include "storm/logic/Formulas.h" |
|||
#include "storm/modelchecker/multiobjective/constraintbased/CbObjective.h" |
|||
|
|||
#include "storm/exceptions/UnexpectedException.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
template <class SparseModelType> |
|||
struct SparseCbPreprocessorReturnType { |
|||
|
|||
enum class QueryType { Achievability }; |
|||
|
|||
storm::logic::MultiObjectiveFormula const& originalFormula; |
|||
SparseModelType const& originalModel; |
|||
std::shared_ptr<SparseModelType> preprocessedModel; |
|||
QueryType queryType; |
|||
|
|||
// The (preprocessed) objectives |
|||
std::vector<CbObjective<typename SparseModelType::ValueType>> objectives; |
|||
|
|||
// The states for which there is a scheduler such that all objectives have value zero |
|||
storm::storage::BitVector possibleBottomStates; |
|||
// Overapproximation of the set of choices that are part of an end component. |
|||
storm::storage::BitVector possibleECChoices; |
|||
|
|||
SparseCbPreprocessorReturnType(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel) : originalFormula(originalFormula), originalModel(originalModel) { |
|||
// Intentionally left empty |
|||
} |
|||
|
|||
void printToStream(std::ostream& out) const { |
|||
out << std::endl; |
|||
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; |
|||
out << " Multi-objective Query " << std::endl; |
|||
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; |
|||
out << std::endl; |
|||
out << "Original Formula: " << std::endl; |
|||
out << "--------------------------------------------------------------" << std::endl; |
|||
out << "\t" << originalFormula << std::endl; |
|||
out << std::endl; |
|||
out << "Objectives:" << std::endl; |
|||
out << "--------------------------------------------------------------" << std::endl; |
|||
for (auto const& obj : objectives) { |
|||
obj.printToStream(out); |
|||
} |
|||
out << "--------------------------------------------------------------" << std::endl; |
|||
out << std::endl; |
|||
out << "Original Model Information:" << std::endl; |
|||
originalModel.printModelInformationToStream(out); |
|||
out << std::endl; |
|||
out << "Preprocessed Model Information:" << std::endl; |
|||
preprocessedModel.printModelInformationToStream(out); |
|||
out << std::endl; |
|||
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; |
|||
} |
|||
|
|||
friend std::ostream& operator<<(std::ostream& out, SparseCbPreprocessorReturnType<SparseModelType> const& ret) { |
|||
ret.printToStream(out); |
|||
return out; |
|||
} |
|||
|
|||
}; |
|||
} |
|||
} |
|||
} |
|||
|
@ -0,0 +1,131 @@ |
|||
#pragma once |
|||
|
|||
#include <boost/optional.hpp> |
|||
#include <memory> |
|||
|
|||
#include "storm/logic/Formula.h" |
|||
#include "storm/logic/Bound.h" |
|||
#include "storm/solver/OptimizationDirection.h" |
|||
#include "storm/modelchecker/multiobjective/Objective.h" |
|||
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h" |
|||
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" |
|||
#include "storm/models/sparse/Mdp.h" |
|||
#include "storm/models/sparse/MarkovAutomaton.h" |
|||
#include "storm/models/sparse/StandardRewardModel.h" |
|||
#include "storm/utility/vector.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
template <typename SparseModelType> |
|||
class SparseMultiObjectivePreprocessorTask { |
|||
public: |
|||
SparseMultiObjectivePreprocessorTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective) : objective(objective) { |
|||
// intentionally left empty |
|||
} |
|||
|
|||
virtual void perform(SparseModelType& preprocessedModel) const = 0; |
|||
|
|||
virtual bool requiresEndComponentAnalysis() const { |
|||
return false; |
|||
} |
|||
|
|||
|
|||
protected: |
|||
std::shared_ptr<Objective<typename SparseModelType::ValueType>> objective; |
|||
}; |
|||
|
|||
// Transforms reachability probabilities to total expected rewards by adding a rewardModel |
|||
// such that one reward is given whenever a goal state is reached from a relevant state |
|||
template <typename SparseModelType> |
|||
class SparseMultiObjectivePreprocessorReachProbToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { |
|||
public: |
|||
SparseMultiObjectivePreprocessorReachProbToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula, std::shared_ptr<storm::logic::Formula const> const& goalStateFormula) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula), goalStateFormula(goalStateFormula) { |
|||
// Intentionally left empty |
|||
} |
|||
|
|||
virtual void perform(SparseModelType& preprocessedModel) const override { |
|||
|
|||
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from a relevantState to a goalState |
|||
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); |
|||
storm::storage::BitVector relevantStates = mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); |
|||
storm::storage::BitVector goalStates = mc.check(*goalStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); |
|||
|
|||
std::vector<typename SparseModelType::ValueType> objectiveRewards(preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<typename SparseModelType::ValueType>()); |
|||
for (auto const& state : relevantStates) { |
|||
for (uint_fast64_t row = preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]; row < preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state + 1]; ++row) { |
|||
objectiveRewards[row] = preprocessedModel.getTransitionMatrix().getConstrainedRowSum(row, goalStates); |
|||
} |
|||
} |
|||
STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); |
|||
preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), typename SparseModelType::RewardModelType(boost::none, std::move(objectiveRewards))); |
|||
} |
|||
|
|||
private: |
|||
std::shared_ptr<storm::logic::Formula const> relevantStateFormula; |
|||
std::shared_ptr<storm::logic::Formula const> goalStateFormula; |
|||
}; |
|||
|
|||
// Transforms expected reachability rewards to total expected rewards by adding a rewardModel |
|||
// such that non-relevant states get reward zero |
|||
template <typename SparseModelType> |
|||
class SparseMultiObjectivePreprocessorReachRewToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { |
|||
public: |
|||
SparseMultiObjectivePreprocessorReachRewToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula, std::string const& originalRewardModelName) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula), originalRewardModelName(originalRewardModelName) { |
|||
// Intentionally left empty |
|||
} |
|||
|
|||
virtual void perform(SparseModelType& preprocessedModel) const override { |
|||
|
|||
// build stateAction reward vector that only gives reward for relevant states |
|||
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); |
|||
storm::storage::BitVector nonRelevantStates = ~mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); |
|||
typename SparseModelType::RewardModelType objectiveRewards = preprocessedModel.getRewardModel(originalRewardModelName); |
|||
objectiveRewards.reduceToStateBasedRewards(preprocessedModel.getTransitionMatrix(), false); |
|||
if (objectiveRewards.hasStateRewards()) { |
|||
storm::utility::vector::setVectorValues(objectiveRewards.getStateRewardVector(), nonRelevantStates, storm::utility::zero<typename SparseModelType::ValueType>()); |
|||
} |
|||
if (objectiveRewards.hasStateActionRewards()) { |
|||
for (auto state : nonRelevantStates) { |
|||
std::fill_n(objectiveRewards.getStateActionRewardVector().begin() + preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state], preprocessedModel.getTransitionMatrix().getRowGroupSize(state), storm::utility::zero<typename SparseModelType::ValueType>()); |
|||
} |
|||
} |
|||
STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); |
|||
preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), std::move(objectiveRewards)); |
|||
} |
|||
|
|||
private: |
|||
std::shared_ptr<storm::logic::Formula const> relevantStateFormula; |
|||
std::string originalRewardModelName; |
|||
}; |
|||
|
|||
// Transforms expected reachability time to total expected rewards by adding a rewardModel |
|||
// such that every time step done from a relevant state yields one reward |
|||
template <typename SparseModelType> |
|||
class SparseMultiObjectivePreprocessorReachTimeToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { |
|||
public: |
|||
SparseMultiObjectivePreprocessorReachTimeToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula) { |
|||
// Intentionally left empty |
|||
} |
|||
|
|||
virtual void perform(SparseModelType& preprocessedModel) const override { |
|||
|
|||
// build stateAction reward vector that only gives reward for relevant states |
|||
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); |
|||
storm::storage::BitVector relevantStates = mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); |
|||
|
|||
std::vector<typename SparseModelType::ValueType> timeRewards(preprocessedModel.getNumberOfStates(), storm::utility::zero<typename SparseModelType::ValueType>()); |
|||
storm::utility::vector::setVectorValues(timeRewards, dynamic_cast<storm::models::sparse::MarkovAutomaton<typename SparseModelType::ValueType> const&>(preprocessedModel).getMarkovianStates() & relevantStates, storm::utility::one<typename SparseModelType::ValueType>()); |
|||
STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); |
|||
preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), typename SparseModelType::RewardModelType(std::move(timeRewards))); |
|||
} |
|||
|
|||
private: |
|||
std::shared_ptr<storm::logic::Formula const> relevantStateFormula; |
|||
}; |
|||
|
|||
} |
|||
} |
|||
} |
|||
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue