5 changed files with 800 additions and 0 deletions
			
			
		- 
					64src/storm/modelchecker/multiobjective/Objective.h
- 
					448src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp
- 
					84src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h
- 
					73src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorReturnType.h
- 
					131src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorTask.h
| @ -0,0 +1,64 @@ | |||
| #pragma once | |||
| 
 | |||
| #include <boost/optional.hpp> | |||
| 
 | |||
| #include "storm/logic/Formula.h" | |||
| #include "storm/logic/Bound.h" | |||
| #include "storm/logic/TimeBound.h" | |||
| #include "storm/solver/OptimizationDirection.h" | |||
| 
 | |||
| namespace storm { | |||
|     namespace modelchecker { | |||
|         namespace multiobjective { | |||
|             template <typename ValueType> | |||
|             struct Objective { | |||
|                 // the original input formula | |||
|                 std::shared_ptr<storm::logic::Formula const> originalFormula; | |||
|                  | |||
|                 // the name of the considered reward model in the preprocessedModel | |||
|                 boost::optional<std::string> rewardModelName; | |||
|                  | |||
|                 // True iff the complementary event is considered. | |||
|                 // E.g. if we consider P<1-t [F !"safe"] instead of P>=t [ G "safe"] | |||
|                 bool considersComplementaryEvent; | |||
|                  | |||
|                 // The probability/reward threshold for the preprocessed model (if originalFormula specifies one). | |||
|                 boost::optional<storm::logic::Bound> bound; | |||
|                 // The optimization direction for the preprocessed model | |||
|                 // if originalFormula does ot specifies one, the direction is derived from the bound. | |||
|                 storm::solver::OptimizationDirection optimizationDirection; | |||
|                  | |||
|                 // Lower and upper time/step bouds | |||
|                 boost::optional<storm::logic::TimeBound> lowerTimeBound, upperTimeBound; | |||
|                  | |||
|                 void printToStream(std::ostream& out) const { | |||
|                     out  << originalFormula->toString(); | |||
|                     out << " \t"; | |||
|                     out << "direction: "; | |||
|                     out << optimizationDirection; | |||
|                     out << " \t"; | |||
|                     out << "intern bound: "; | |||
|                     if (bound){ | |||
|                         out << bound; | |||
|                     } else { | |||
|                         out << " -none-    "; | |||
|                     } | |||
|                     out << " \t"; | |||
|                     out << "time bounds: "; | |||
|                     if (lowerTimeBound && upperTimeBound) { | |||
|                         out << (lowerTimeBound->isStrict() ? "(" : "[") << lowerTimeBound->getBound() << "," << upperTimeBound->getBound() << (upperTimeBound->isStrict() ? ")" : "]"); | |||
|                     } else if (lowerTimeBound) { | |||
|                         out << (lowerTimeBound->isStrict() ? ">" : ">=") << lowerTimeBound->getBound(); | |||
|                     } else if (upperTimeBound) { | |||
|                         out << (upperTimeBound->isStrict() ? "<" : "<=") << upperTimeBound->getBound(); | |||
|                     } else { | |||
|                         out << " -none-    "; | |||
|                     } | |||
|                     out << " \t"; | |||
|                     out << "intern reward model: " << *rewardModelName; | |||
|                  } | |||
|             }; | |||
|         } | |||
|     } | |||
| } | |||
| 
 | |||
| @ -0,0 +1,448 @@ | |||
| #include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h"
 | |||
| 
 | |||
| #include <algorithm>
 | |||
| #include <storm/transformer/GoalStateMerger.h>
 | |||
| 
 | |||
| #include "storm/models/sparse/Mdp.h"
 | |||
| #include "storm/models/sparse/MarkovAutomaton.h"
 | |||
| #include "storm/models/sparse/StandardRewardModel.h"
 | |||
| #include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
 | |||
| #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
 | |||
| #include "storm/storage/MaximalEndComponentDecomposition.h"
 | |||
| #include "storm/storage/memorystructure/MemoryStructureBuilder.h"
 | |||
| #include "storm/storage/memorystructure/SparseModelMemoryProduct.h"
 | |||
| #include "storm/storage/expressions/ExpressionManager.h"
 | |||
| #include "storm/transformer/SubsystemBuilder.h"
 | |||
| #include "storm/utility/macros.h"
 | |||
| #include "storm/utility/vector.h"
 | |||
| #include "storm/utility/graph.h"
 | |||
| #include "storm/utility/endComponents.h"
 | |||
| 
 | |||
| #include "storm/exceptions/InvalidPropertyException.h"
 | |||
| #include "storm/exceptions/UnexpectedException.h"
 | |||
| #include "storm/exceptions/NotImplementedException.h"
 | |||
| 
 | |||
| namespace storm { | |||
|     namespace modelchecker { | |||
|         namespace multiobjective { | |||
|                  | |||
|             template<typename SparseModelType> | |||
|             typename SparseMultiObjectivePreprocessor<SparseModelType>::ReturnType SparseMultiObjectivePreprocessor<SparseModelType>::preprocess(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula) { | |||
|                  | |||
|                 PreprocessorData data(originalModel); | |||
|                  | |||
|                 //Invoke preprocessing on the individual objectives
 | |||
|                 for (auto const& subFormula : originalFormula.getSubformulas()) { | |||
|                     STORM_LOG_INFO("Preprocessing objective " << *subFormula<< "."); | |||
|                     data.objectives.push_back(std::make_shared<Objective<ValueType>>()); | |||
|                     data.objectives.back()->originalFormula = subFormula; | |||
|                     data.finiteRewardCheckObjectives.resize(data.objectives.size(), false); | |||
|                     if (data.objectives.back()->originalFormula->isOperatorFormula()) { | |||
|                         preprocessOperatorFormula(data.objectives.back()->originalFormula->asOperatorFormula(), data); | |||
|                     } else { | |||
|                         STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *subFormula << " of " << originalFormula << " because it is not supported"); | |||
|                     } | |||
|                 } | |||
|                  | |||
|                 storm::storage::SparseModelMemoryProduct<ValueType> product = data.memory->product(originalModel); | |||
|                 std::shared_ptr<SparseModelType> preprocessedModel = std::dynamic_pointer_cast<SparseModelType>(product.build()); | |||
|                  | |||
|                 auto backwardTransitions = preprocessedModel->getBackwardTransitions(); | |||
|                  | |||
|                 bool endComponentAnalysisRequired = false; | |||
|                 for (auto& task : data.tasks) { | |||
|                     endComponentAnalysisRequired = endComponentAnalysisRequired || task->requiresEndComponentAnalysis(); | |||
|                 } | |||
|                 if (endComponentAnalysisRequired) { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "End component analysis required but currently not implemented."); | |||
|                 } | |||
|                  | |||
|                 for (auto& task : data.tasks) { | |||
|                     task->perform(*preprocessedModel); | |||
|                 } | |||
|                  | |||
|                 ReturnType result(originalFormula, originalModel); | |||
|                 for (auto& obj : data.objectives) { | |||
|                     result.objectives.push_back(std::move(*obj)); | |||
|                 } | |||
|                 result.preprocessedModel = std::move(preprocessedModel); | |||
|                 result.queryType = ReturnType::QueryType::Achievability; | |||
|                  | |||
|                 auto minMaxNonZeroRewardStates = getStatesWithNonZeroRewardMinMax(result, backwardTransitions); | |||
|                 auto finiteRewardStates = ensureRewardFiniteness(result, data.finiteRewardCheckObjectives, minMaxNonZeroRewardStates.first, backwardTransitions); | |||
|                  | |||
|                 std::set<std::string> relevantRewardModels; | |||
|                 for (auto const& obj : result.objectives) { | |||
|                     relevantRewardModels.insert(*obj.rewardModelName); | |||
|                 } | |||
|                  | |||
|                 // Build a subsystem that discards states that yield infinite reward for all schedulers.
 | |||
|                 // We can also merge the states that will have reward zero anyway.
 | |||
|                 storm::storage::BitVector zeroRewardStates = ~minMaxNonZeroRewardStates.second; | |||
|                 storm::transformer::GoalStateMerger<SparseModelType> merger(*result.preprocessedModel); | |||
|                 typename storm::transformer::GoalStateMerger<SparseModelType>::ReturnType mergerResult = merger.mergeTargetAndSinkStates(finiteRewardStates, zeroRewardStates, storm::storage::BitVector(finiteRewardStates.size(), false), std::vector<std::string>(relevantRewardModels.begin(), relevantRewardModels.end())); | |||
|                  | |||
|                 result.preprocessedModel = mergerResult.model; | |||
|                 result.possibleBottomStates = (~minMaxNonZeroRewardStates.first) % finiteRewardStates; | |||
|                 if (mergerResult.targetState) { | |||
|                     storm::storage::BitVector targetStateAsVector(result.preprocessedModel->getNumberOfStates(), false); | |||
|                     targetStateAsVector.set(*mergerResult.targetState, true); | |||
|                     result.possibleECChoices = storm::utility::graph::performProb0E(*result.preprocessedModel, result.preprocessedModel->getBackwardTransitions(), storm::storage::BitVector(targetStateAsVector.size(), true), targetStateAsVector); | |||
|                     result.possibleECChoices.set(result.preprocessedModel->getTransitionMatrix().getRowGroupIndices()[*mergerResult.targetState], true); | |||
|                     // There is an additional state in the result
 | |||
|                     result.possibleBottomStates.resize(result.possibleBottomStates.size() + 1, true); | |||
|                 } | |||
|                 assert(result.possibleBottomStates.size() == result.preprocessedModel->getNumberOfStates()); | |||
|                  | |||
|                  | |||
|                 return result; | |||
|             } | |||
|              | |||
|             template <typename SparseModelType> | |||
|             SparseMultiObjectivePreprocessor<SparseModelType>::PreprocessorData::PreprocessorData(SparseModelType const& model) : originalModel(model) { | |||
|                 storm::storage::MemoryStructureBuilder memoryBuilder(1); | |||
|                 memoryBuilder.setTransition(0,0, storm::logic::Formula::getTrueFormula()); | |||
|                 memory = std::make_shared<storm::storage::MemoryStructure>(memoryBuilder.build()); | |||
|                  | |||
|                 // The memoryLabelPrefix should not be a prefix of a state label of the given model to ensure uniqueness of label names
 | |||
|                 memoryLabelPrefix = "mem"; | |||
|                 while (true) { | |||
|                     bool prefixIsUnique = true; | |||
|                     for (auto const& label : originalModel.getStateLabeling().getLabels()) { | |||
|                         if (memoryLabelPrefix.size() <= label.size()) { | |||
|                             if (std::mismatch(memoryLabelPrefix.begin(), memoryLabelPrefix.end(), label.begin()).first == memoryLabelPrefix.end()) { | |||
|                                 prefixIsUnique = false; | |||
|                                 memoryLabelPrefix = "_" + memoryLabelPrefix; | |||
|                                 break; | |||
|                             } | |||
|                         } | |||
|                     } | |||
|                     if (prefixIsUnique) { | |||
|                         break; | |||
|                     } | |||
|                 } | |||
|                  | |||
|                 // The rewardModelNamePrefix should not be a prefix of a reward model name of the given model to ensure uniqueness of reward model names
 | |||
|                 rewardModelNamePrefix = "obj"; | |||
|                 while (true) { | |||
|                     bool prefixIsUnique = true; | |||
|                     for (auto const& label : originalModel.getStateLabeling().getLabels()) { | |||
|                         if (memoryLabelPrefix.size() <= label.size()) { | |||
|                             if (std::mismatch(memoryLabelPrefix.begin(), memoryLabelPrefix.end(), label.begin()).first == memoryLabelPrefix.end()) { | |||
|                                 prefixIsUnique = false; | |||
|                                 memoryLabelPrefix = "_" + memoryLabelPrefix; | |||
|                                 break; | |||
|                             } | |||
|                         } | |||
|                     } | |||
|                     if (prefixIsUnique) { | |||
|                         break; | |||
|                     } | |||
|                 } | |||
|                  | |||
|                  | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessOperatorFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data) { | |||
|                  | |||
|                 Objective<ValueType>& objective = *data.objectives.back(); | |||
|                  | |||
|                 objective.considersComplementaryEvent = false; | |||
|                  | |||
|                 if (formula.hasBound()) { | |||
|                     STORM_LOG_THROW(!formula.getBound().threshold.containsVariables(), storm::exceptions::InvalidPropertyException, "The formula " << formula << "considers a non-constant threshold"); | |||
|                     objective.bound = formula.getBound(); | |||
|                     if (storm::logic::isLowerBound(formula.getBound().comparisonType)) { | |||
|                         objective.optimizationDirection = storm::solver::OptimizationDirection::Maximize; | |||
|                     } else { | |||
|                         objective.optimizationDirection = storm::solver::OptimizationDirection::Minimize; | |||
|                     } | |||
|                     STORM_LOG_WARN_COND(!formula.hasOptimalityType() || formula.getOptimalityType() == objective.optimizationDirection, "Optimization direction of formula " << formula << " ignored as the formula also specifies a threshold."); | |||
|                 } else if (formula.hasOptimalityType()){ | |||
|                     objective.optimizationDirection = formula.getOptimalityType(); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << formula << " does not specify whether to minimize or maximize"); | |||
|                 } | |||
|                  | |||
|                 if (formula.isProbabilityOperatorFormula()){ | |||
|                     preprocessProbabilityOperatorFormula(formula.asProbabilityOperatorFormula(), data); | |||
|                 } else if (formula.isRewardOperatorFormula()){ | |||
|                     preprocessRewardOperatorFormula(formula.asRewardOperatorFormula(), data); | |||
|                 } else if (formula.isTimeOperatorFormula()){ | |||
|                     preprocessTimeOperatorFormula(formula.asTimeOperatorFormula(), data); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the objective " << formula << " because it is not supported"); | |||
|                 } | |||
|                  | |||
|                 // Invert the bound and optimization direction (if necessary)
 | |||
|                 if (objective.considersComplementaryEvent) { | |||
|                     if (objective.bound) { | |||
|                         objective.bound->threshold = objective.bound->threshold.getManager().rational(storm::utility::one<storm::RationalNumber>()) - objective.bound->threshold; | |||
|                         objective.bound->comparisonType = storm::logic::invert(objective.bound->comparisonType); | |||
|                     } | |||
|                     objective.optimizationDirection = storm::solver::invert(objective.optimizationDirection); | |||
|                 } | |||
|                  | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data) { | |||
|                  | |||
|                 if (formula.getSubformula().isUntilFormula()){ | |||
|                     preprocessUntilFormula(formula.getSubformula().asUntilFormula(), data); | |||
|                 } else if (formula.getSubformula().isBoundedUntilFormula()){ | |||
|                     preprocessBoundedUntilFormula(formula.getSubformula().asBoundedUntilFormula(), data); | |||
|                 } else if (formula.getSubformula().isGloballyFormula()){ | |||
|                     preprocessGloballyFormula(formula.getSubformula().asGloballyFormula(), data); | |||
|                 } else if (formula.getSubformula().isEventuallyFormula()){ | |||
|                     preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); | |||
|                 } | |||
|             } | |||
| 
 | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, PreprocessorData& data) { | |||
|                  | |||
|                 STORM_LOG_THROW((formula.hasRewardModelName() && data.originalModel.hasRewardModel(formula.getRewardModelName())) | |||
|                                 || (!formula.hasRewardModelName() && data.originalModel.hasUniqueRewardModel()), storm::exceptions::InvalidPropertyException, "The reward model is not unique or the formula " << formula << " does not specify an existing reward model."); | |||
|                  | |||
|                 std::string rewardModelName; | |||
|                 if (formula.hasRewardModelName()) { | |||
|                     rewardModelName = formula.getRewardModelName(); | |||
|                     STORM_LOG_THROW(data.originalModel.hasRewardModel(rewardModelName), storm::exceptions::InvalidPropertyException, "The reward model specified by formula " << formula << " does not exist in the model"); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(data.originalModel.hasUniqueRewardModel(), storm::exceptions::InvalidOperationException, "The formula " << formula << " does not specify a reward model name and the reward model is not unique."); | |||
|                     rewardModelName = data.originalModel.getRewardModels().begin()->first; | |||
|                 } | |||
|                  | |||
|                 if (formula.getSubformula().isEventuallyFormula()){ | |||
|                     preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data, rewardModelName); | |||
|                 } else if (formula.getSubformula().isCumulativeRewardFormula()) { | |||
|                     preprocessCumulativeRewardFormula(formula.getSubformula().asCumulativeRewardFormula(), data, rewardModelName); | |||
|                 } else if (formula.getSubformula().isTotalRewardFormula()) { | |||
|                     preprocessTotalRewardFormula(data, rewardModelName); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); | |||
|                 } | |||
|             } | |||
| 
 | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, PreprocessorData& data) { | |||
|                 // Time formulas are only supported for Markov automata
 | |||
|                 STORM_LOG_THROW(data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton), storm::exceptions::InvalidPropertyException, "Time operator formulas are only supported for Markov automata."); | |||
|                  | |||
|                 if (formula.getSubformula().isEventuallyFormula()){ | |||
|                     preprocessEventuallyFormula(formula.getSubformula().asEventuallyFormula(), data); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); | |||
|                 } | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessUntilFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data) { | |||
|                  | |||
|                 // Check if the formula is already satisfied in the initial state because then the transformation to expected rewards will fail.
 | |||
|                 if (!data.objectives.back()->lowerTimeBound) { | |||
|                     storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(data.originalModel); | |||
|                     if (!(data.originalModel.getInitialStates() & mc.check(formula.getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector()).empty()) { | |||
|                         // TODO: Handle this case more properly
 | |||
|                         STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "The Probability for the objective " << *data.objectives.back()->originalFormula << " is always one as the rhs of the until formula is true in the initial state. This (trivial) case is currently not implemented."); | |||
|                     } | |||
|                 } | |||
|                  | |||
|                 // Create a memory structure that stores whether a non-PhiState or a PsiState has already been reached
 | |||
|                 storm::storage::MemoryStructureBuilder builder(2); | |||
|                 std::string relevantStatesLabel = data.memoryLabelPrefix + "_obj" + std::to_string(data.objectives.size()) + "_relevant"; | |||
|                 builder.setLabel(0, relevantStatesLabel); | |||
|                 auto negatedLeftSubFormula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getLeftSubformula().asSharedPointer()); | |||
|                 auto targetFormula = std::make_shared<storm::logic::BinaryBooleanStateFormula>(storm::logic::BinaryBooleanStateFormula::OperatorType::Or, negatedLeftSubFormula, formula.getRightSubformula().asSharedPointer()); | |||
|                 builder.setTransition(0, 0, std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, targetFormula)); | |||
|                 builder.setTransition(0, 1, targetFormula); | |||
|                 builder.setTransition(1, 1, storm::logic::Formula::getTrueFormula()); | |||
|                 storm::storage::MemoryStructure objectiveMemory = builder.build(); | |||
|                 data.memory = std::make_shared<storm::storage::MemoryStructure>(data.memory->product(objectiveMemory)); | |||
|                  | |||
|                 data.objectives.back()->rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size()); | |||
|                  | |||
|                 auto relevantStatesFormula = std::make_shared<storm::logic::AtomicLabelFormula>(relevantStatesLabel); | |||
|                 data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachProbToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula, formula.getRightSubformula().asSharedPointer())); | |||
|                  | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data) { | |||
|                 STORM_LOG_THROW(!data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) || !formula.isStepBounded(), storm::exceptions::InvalidPropertyException, "Multi-objective model checking currently does not support STEP-bounded properties for Markov automata."); | |||
|                  | |||
|                 if (formula.hasLowerBound()) { | |||
|                     STORM_LOG_THROW(!formula.getLowerBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The lower time bound for the formula " << formula << " still contains variables"); | |||
|                     if (!storm::utility::isZero(formula.getLowerBound<double>()) || formula.isLowerBoundStrict()) { | |||
|                         data.objectives.back()->lowerTimeBound = storm::logic::TimeBound(formula.isLowerBoundStrict(), formula.getLowerBound()); | |||
|                     } | |||
|                 } | |||
|                 if (formula.hasUpperBound()) { | |||
|                     STORM_LOG_THROW(!formula.getUpperBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The Upper time bound for the formula " << formula << " still contains variables"); | |||
|                     if (!storm::utility::isInfinity(formula.getUpperBound<double>())) { | |||
|                         data.objectives.back()->upperTimeBound = storm::logic::TimeBound(formula.isUpperBoundStrict(), formula.getUpperBound()); | |||
|                     } | |||
|                 } | |||
|                 preprocessUntilFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data); | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data) { | |||
|                 // The formula will be transformed to an until formula for the complementary event.
 | |||
|                 data.objectives.back()->considersComplementaryEvent = true; | |||
|                  | |||
|                 auto negatedSubformula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer()); | |||
|                  | |||
|                 preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), data); | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { | |||
|                 if (formula.isReachabilityProbabilityFormula()){ | |||
|                     preprocessUntilFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), data); | |||
|                     return; | |||
|                 } | |||
|                              | |||
|                 // Create a memory structure that stores whether a target state has already been reached
 | |||
|                 storm::storage::MemoryStructureBuilder builder(2); | |||
|                 // Get a unique label that is not already present in the model
 | |||
|                 std::string relevantStatesLabel = data.memoryLabelPrefix + "_obj" + std::to_string(data.objectives.size()) + "_relevant"; | |||
|                 builder.setLabel(0, relevantStatesLabel); | |||
|                 builder.setTransition(0, 0, std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer())); | |||
|                 builder.setTransition(0, 1, formula.getSubformula().asSharedPointer()); | |||
|                 builder.setTransition(1, 1, std::make_shared<storm::logic::BooleanLiteralFormula>(true)); | |||
|                 storm::storage::MemoryStructure objectiveMemory = builder.build(); | |||
|                 data.memory = std::make_shared<storm::storage::MemoryStructure>(data.memory->product(objectiveMemory)); | |||
|                  | |||
|                 auto relevantStatesFormula = std::make_shared<storm::logic::AtomicLabelFormula>(relevantStatesLabel); | |||
|                  | |||
|                 data.objectives.back()->rewardModelName = data.rewardModelNamePrefix + std::to_string(data.objectives.size()); | |||
|                 data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true); | |||
|                  | |||
|                 if (formula.isReachabilityRewardFormula()) { | |||
|                     assert(optionalRewardModelName.is_initialized()); | |||
|                     data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachRewToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula, optionalRewardModelName.get())); | |||
|                     data.finiteRewardCheckObjectives.set(data.objectives.size() - 1); | |||
|                 } else if (formula.isReachabilityTimeFormula() && data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton)) { | |||
|                     data.finiteRewardCheckObjectives.set(data.objectives.size() - 1); | |||
|                     data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachTimeToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula)); | |||
|                 } else { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) ?  "nor reachability time" : "") << ". This is not supported."); | |||
|                 } | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { | |||
|                 STORM_LOG_THROW(data.originalModel.isOfType(storm::models::ModelType::Mdp), storm::exceptions::InvalidPropertyException, "Cumulative reward formulas are not supported for the given model type."); | |||
|                  | |||
|                 STORM_LOG_THROW(!formula.getBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The time bound for the formula " << formula << " still contains variables"); | |||
|                 if (!storm::utility::isInfinity(formula.getBound<double>())) { | |||
|                     data.objectives.back()->upperTimeBound = storm::logic::TimeBound(formula.isBoundStrict(), formula.getBound()); | |||
|                 } | |||
| 
 | |||
| 
 | |||
|             } | |||
|              | |||
|             template<typename SparseModelType> | |||
|             void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessTotalRewardFormula(PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName) { | |||
|                 assert(optionalRewardModelName.is_initialized()); | |||
|                 data.objectives.back()->rewardModelName = *optionalRewardModelName; | |||
|                 data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true); | |||
|             } | |||
|              | |||
|              | |||
|             template<typename SparseModelType> | |||
|             std::pair<storm::storage::BitVector, storm::storage::BitVector> SparseMultiObjectivePreprocessor<SparseModelType>::getStatesWithNonZeroRewardMinMax(ReturnType& result, storm::storage::SparseMatrix<ValueType> const& backwardTransitions) { | |||
|                  | |||
|                 uint_fast64_t stateCount = result.preprocessedModel->getNumberOfStates(); | |||
|                 auto const& transitions = result.preprocessedModel->getTransitionMatrix(); | |||
|                 std::vector<uint_fast64_t> const& groupIndices = transitions.getRowGroupIndices(); | |||
|                 storm::storage::BitVector allStates(stateCount, true); | |||
| 
 | |||
|                 // Get the choices that yield non-zero reward
 | |||
|                 storm::storage::BitVector zeroRewardChoices(result.preprocessedModel->getNumberOfChoices(), true); | |||
|                 for (auto const& obj : result.objectives) { | |||
|                     auto const& rewModel = result.preprocessedModel->getRewardModel(*obj.rewardModelName); | |||
|                     zeroRewardChoices &= rewModel.getChoicesWithZeroReward(transitions); | |||
|                 } | |||
|                  | |||
|                 // Get the states that have reward for at least one (or for all) choices assigned to it.
 | |||
|                 storm::storage::BitVector statesWithRewardForOneChoice = storm::storage::BitVector(stateCount, false); | |||
|                 storm::storage::BitVector statesWithRewardForAllChoices = storm::storage::BitVector(stateCount, true); | |||
|                 for (uint_fast64_t state = 0; state < stateCount; ++state) { | |||
|                     bool stateHasChoiceWithReward = false; | |||
|                     bool stateHasChoiceWithoutReward = false; | |||
|                     uint_fast64_t const& groupEnd = groupIndices[state + 1]; | |||
|                     for (uint_fast64_t choice = groupIndices[state]; choice < groupEnd; ++choice) { | |||
|                         if (zeroRewardChoices.get(choice)) { | |||
|                             stateHasChoiceWithoutReward = true; | |||
|                         } else { | |||
|                             stateHasChoiceWithReward = true; | |||
|                         } | |||
|                     } | |||
|                     if (stateHasChoiceWithReward) { | |||
|                         statesWithRewardForOneChoice.set(state, true); | |||
|                     } | |||
|                     if (stateHasChoiceWithoutReward) { | |||
|                         statesWithRewardForAllChoices.set(state, false); | |||
|                     } | |||
|                 } | |||
|                  | |||
|                 // get the states from which the minimal/maximal expected reward is always non-zero
 | |||
|                 storm::storage::BitVector minStates = storm::utility::graph::performProbGreater0A(transitions, groupIndices, backwardTransitions, allStates, statesWithRewardForAllChoices, false, 0, zeroRewardChoices); | |||
|                 storm::storage::BitVector maxStates = storm::utility::graph::performProbGreater0E(backwardTransitions, allStates, statesWithRewardForOneChoice); | |||
|                 STORM_LOG_ASSERT(minStates.isSubsetOf(maxStates), "The computed set of states with minimal non-zero expected rewards is not a subset of the states with maximal non-zero rewards."); | |||
|                 return std::make_pair(std::move(minStates), std::move(maxStates)); | |||
|             } | |||
|           | |||
|             template<typename SparseModelType> | |||
|             storm::storage::BitVector SparseMultiObjectivePreprocessor<SparseModelType>::ensureRewardFiniteness(ReturnType& result, storm::storage::BitVector const& finiteRewardCheckObjectives, storm::storage::BitVector const& nonZeroRewardMin, storm::storage::SparseMatrix<ValueType> const& backwardTransitions) { | |||
|                  | |||
|                 auto const& transitions = result.preprocessedModel->getTransitionMatrix(); | |||
|                 std::vector<uint_fast64_t> const& groupIndices = transitions.getRowGroupIndices(); | |||
|                  | |||
|                 storm::storage::BitVector maxRewardsToCheck(result.preprocessedModel->getNumberOfChoices(), true); | |||
|                 bool hasMinRewardToCheck; | |||
|                 for (auto const& objIndex : finiteRewardCheckObjectives) { | |||
|                     auto const& rewModel = result.preprocessedModel->getRewardModel(result.objectives[objIndex].rewardModelName.get()); | |||
|                     if (storm::solver::minimize(result.objectives[objIndex].optimizationDirection)) { | |||
|                         hasMinRewardToCheck = true; | |||
|                     } else { | |||
|                         maxRewardsToCheck &= rewModel.getChoicesWithZeroReward(transitions); | |||
|                     } | |||
|                 } | |||
|                 maxRewardsToCheck.complement(); | |||
|                  | |||
|                 // Assert reward finitiness for maximizing objectives under all schedulers
 | |||
|                 storm::storage::BitVector allStates(result.preprocessedModel->getNumberOfStates(), true); | |||
|                 if (storm::utility::endComponents::checkIfECWithChoiceExists(transitions, backwardTransitions, allStates, maxRewardsToCheck)) { | |||
|                     STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "At least one of the maximizing objectives induces infinite expected reward (or time). This is not supported"); | |||
|                 } | |||
|                      | |||
|                 // Assert that there is one scheduler under which all rewards are finite.
 | |||
|                 // This only has to be done if there are minimizing expected rewards that potentially can be infinite
 | |||
|                 storm::storage::BitVector finiteRewardStates; | |||
|                 if (hasMinRewardToCheck) { | |||
|                     finiteRewardStates = storm::utility::graph::performProb1E(transitions, groupIndices, backwardTransitions, allStates, ~nonZeroRewardMin); | |||
|                     if ((finiteRewardStates & result.preprocessedModel->getInitialStates()).empty()) { | |||
|                         // There is no scheduler that induces finite reward for the initial state
 | |||
|                         STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "For every scheduler, at least one objective gets infinite reward."); | |||
|                     } | |||
|                 } else { | |||
|                     finiteRewardStates = allStates; | |||
|                 } | |||
|                 return finiteRewardStates; | |||
|             } | |||
|          | |||
|             template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<double>>; | |||
|             template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<double>>; | |||
|              | |||
|             template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<storm::RationalNumber>>; | |||
|             template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>; | |||
|         } | |||
|     } | |||
| } | |||
| @ -0,0 +1,84 @@ | |||
| #pragma once | |||
| 
 | |||
| #include <memory> | |||
| #include <string> | |||
| 
 | |||
| #include "storm/logic/Formulas.h" | |||
| #include "storm/storage/BitVector.h" | |||
| #include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorReturnType.h" | |||
| #include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessorTask.h" | |||
| #include "storm/storage/memorystructure/MemoryStructure.h" | |||
| 
 | |||
| namespace storm { | |||
|     namespace modelchecker { | |||
|         namespace multiobjective { | |||
|              | |||
|             /* | |||
|              * This class invokes the necessary preprocessing for the constraint based multi-objective model checking algorithm | |||
|              */ | |||
|             template <class SparseModelType> | |||
|             class SparseMultiObjectivePreprocessor { | |||
|             public: | |||
|                 typedef typename SparseModelType::ValueType ValueType; | |||
|                 typedef typename SparseModelType::RewardModelType RewardModelType; | |||
|                 typedef SparseMultiObjectivePreprocessorReturnType<SparseModelType> ReturnType; | |||
|                  | |||
|                 /*! | |||
|                  * Preprocesses the given model w.r.t. the given formulas | |||
|                  * @param originalModel The considered model | |||
|                  * @param originalFormula the considered formula. The subformulas should only contain one OperatorFormula at top level. | |||
|                  */ | |||
|                 static ReturnType preprocess(SparseModelType const& originalModel, storm::logic::MultiObjectiveFormula const& originalFormula); | |||
|                  | |||
|             private: | |||
|                  | |||
|                 struct PreprocessorData { | |||
|                     SparseModelType const& originalModel; | |||
|                     std::vector<std::shared_ptr<CbObjective<ValueType>>> objectives; | |||
|                     std::vector<std::shared_ptr<SparseMultiObjectivePreprocessorTask<SparseModelType>>> tasks; | |||
|                     std::shared_ptr<storm::storage::MemoryStructure> memory; | |||
|                      | |||
|                     // Indices of the objectives that require a check for finite reward | |||
|                     storm::storage::BitVector finiteRewardCheckObjectives; | |||
|                      | |||
|                     std::string memoryLabelPrefix; | |||
|                     std::string rewardModelNamePrefix; | |||
|                      | |||
|                     PreprocessorData(SparseModelType const& model); | |||
|                 }; | |||
|                  | |||
|                 /*! | |||
|                  * Apply the neccessary preprocessing for the given formula. | |||
|                  * @param formula the current (sub)formula | |||
|                  * @param data the current data. The currently processed objective is located at data.objectives.back() | |||
|                  * @param optionalRewardModelName the reward model name that is considered for the formula (if available) | |||
|                  */ | |||
|                 static void preprocessOperatorFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessProbabilityOperatorFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessRewardOperatorFormula(storm::logic::RewardOperatorFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessTimeOperatorFormula(storm::logic::TimeOperatorFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessUntilFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessGloballyFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data); | |||
|                 static void preprocessEventuallyFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); | |||
|                 static void preprocessCumulativeRewardFormula(storm::logic::CumulativeRewardFormula const& formula, PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); | |||
|                 static void preprocessTotalRewardFormula(PreprocessorData& data, boost::optional<std::string> const& optionalRewardModelName = boost::none); // The total reward formula itself does not need to be provided as it is unique. | |||
|                  | |||
|                  | |||
|                 /*! | |||
|                  * Computes the set of states that have a non-zero reward w.r.t. all objectives, assuming that the objectives are all minimizing and maximizing, respectively. | |||
|                  */ | |||
|                 static std::pair<storm::storage::BitVector, storm::storage::BitVector> getStatesWithNonZeroRewardMinMax(ReturnType& result, storm::storage::SparseMatrix<ValueType> const& backwardTransitions); | |||
| 
 | |||
|                  | |||
|                 /*! | |||
|                  * Checks whether the occurring expected rewards are finite. If not, the input is rejected. | |||
|                  * Returns the set of states for which a scheduler exists that induces finite reward for all objectives | |||
|                  */ | |||
|                 static storm::storage::BitVector ensureRewardFiniteness(ReturnType& result, storm::storage::BitVector const& finiteRewardCheckObjectives, storm::storage::BitVector const& nonZeroRewardMin, storm::storage::SparseMatrix<ValueType> const& backwardTransitions); | |||
|                  | |||
|             }; | |||
|         } | |||
|     } | |||
| } | |||
| 
 | |||
| @ -0,0 +1,73 @@ | |||
| #pragma once | |||
| 
 | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <boost/optional.hpp> | |||
| 
 | |||
| #include "storm/logic/Formulas.h" | |||
| #include "storm/modelchecker/multiobjective/constraintbased/CbObjective.h" | |||
| 
 | |||
| #include "storm/exceptions/UnexpectedException.h" | |||
| 
 | |||
| namespace storm { | |||
|     namespace modelchecker { | |||
|         namespace multiobjective { | |||
|              | |||
|             template <class SparseModelType> | |||
|             struct SparseCbPreprocessorReturnType { | |||
|                  | |||
|                 enum class QueryType { Achievability }; | |||
|                  | |||
|                 storm::logic::MultiObjectiveFormula const& originalFormula; | |||
|                 SparseModelType const& originalModel; | |||
|                 std::shared_ptr<SparseModelType> preprocessedModel; | |||
|                 QueryType queryType; | |||
|                  | |||
|                 // The (preprocessed) objectives | |||
|                 std::vector<CbObjective<typename SparseModelType::ValueType>> objectives; | |||
|                  | |||
|                 // The states for which there is a scheduler such that all objectives have value zero | |||
|                 storm::storage::BitVector possibleBottomStates; | |||
|                 // Overapproximation of the set of choices that are part of an end component. | |||
|                 storm::storage::BitVector possibleECChoices; | |||
|                  | |||
|                 SparseCbPreprocessorReturnType(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel) : originalFormula(originalFormula), originalModel(originalModel) { | |||
|                     // Intentionally left empty | |||
|                 } | |||
|                  | |||
|                 void printToStream(std::ostream& out) const { | |||
|                     out << std::endl; | |||
|                     out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; | |||
|                     out << "                                                       Multi-objective Query                                              " << std::endl; | |||
|                     out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; | |||
|                     out << std::endl; | |||
|                     out << "Original Formula: " << std::endl; | |||
|                     out << "--------------------------------------------------------------" << std::endl; | |||
|                     out << "\t" << originalFormula << std::endl; | |||
|                     out << std::endl; | |||
|                     out << "Objectives:" << std::endl; | |||
|                     out << "--------------------------------------------------------------" << std::endl; | |||
|                     for (auto const& obj : objectives) { | |||
|                         obj.printToStream(out); | |||
|                     } | |||
|                     out << "--------------------------------------------------------------" << std::endl; | |||
|                     out << std::endl; | |||
|                     out << "Original Model Information:" << std::endl; | |||
|                     originalModel.printModelInformationToStream(out); | |||
|                     out << std::endl; | |||
|                     out << "Preprocessed Model Information:" << std::endl; | |||
|                     preprocessedModel.printModelInformationToStream(out); | |||
|                     out << std::endl; | |||
|                     out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; | |||
|                 } | |||
|             | |||
|                 friend std::ostream& operator<<(std::ostream& out, SparseCbPreprocessorReturnType<SparseModelType> const& ret) { | |||
|                     ret.printToStream(out); | |||
|                     return out; | |||
|                 } | |||
|                  | |||
|             }; | |||
|         } | |||
|     } | |||
| } | |||
| 
 | |||
| @ -0,0 +1,131 @@ | |||
| #pragma once | |||
| 
 | |||
| #include <boost/optional.hpp> | |||
| #include <memory> | |||
| 
 | |||
| #include "storm/logic/Formula.h" | |||
| #include "storm/logic/Bound.h" | |||
| #include "storm/solver/OptimizationDirection.h" | |||
| #include "storm/modelchecker/multiobjective/Objective.h" | |||
| #include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h" | |||
| #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" | |||
| #include "storm/models/sparse/Mdp.h" | |||
| #include "storm/models/sparse/MarkovAutomaton.h" | |||
| #include "storm/models/sparse/StandardRewardModel.h" | |||
| #include "storm/utility/vector.h" | |||
| 
 | |||
| namespace storm { | |||
|     namespace modelchecker { | |||
|         namespace multiobjective { | |||
|              | |||
|             template <typename SparseModelType> | |||
|             class SparseMultiObjectivePreprocessorTask { | |||
|             public: | |||
|                 SparseMultiObjectivePreprocessorTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective) : objective(objective) { | |||
|                     // intentionally left empty | |||
|                 } | |||
|                  | |||
|                 virtual void perform(SparseModelType& preprocessedModel) const = 0; | |||
|                  | |||
|                 virtual bool requiresEndComponentAnalysis() const { | |||
|                     return false; | |||
|                 } | |||
|                  | |||
|                  | |||
|             protected: | |||
|                 std::shared_ptr<Objective<typename SparseModelType::ValueType>> objective; | |||
|             }; | |||
|              | |||
|             // Transforms reachability probabilities to total expected rewards by adding a rewardModel | |||
|             // such that one reward is given whenever a goal state is reached from a relevant state | |||
|             template <typename SparseModelType> | |||
|             class SparseMultiObjectivePreprocessorReachProbToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { | |||
|             public: | |||
|                 SparseMultiObjectivePreprocessorReachProbToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula, std::shared_ptr<storm::logic::Formula const> const& goalStateFormula) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula), goalStateFormula(goalStateFormula) { | |||
|                     // Intentionally left empty | |||
|                 } | |||
|                  | |||
|                 virtual void perform(SparseModelType& preprocessedModel) const override  { | |||
|                         | |||
|                     // build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from a relevantState to a goalState | |||
|                     storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); | |||
|                     storm::storage::BitVector relevantStates = mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); | |||
|                     storm::storage::BitVector goalStates = mc.check(*goalStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); | |||
|                      | |||
|                     std::vector<typename SparseModelType::ValueType> objectiveRewards(preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<typename SparseModelType::ValueType>()); | |||
|                     for (auto const& state : relevantStates) { | |||
|                         for (uint_fast64_t row = preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]; row < preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state + 1]; ++row) { | |||
|                             objectiveRewards[row] = preprocessedModel.getTransitionMatrix().getConstrainedRowSum(row, goalStates); | |||
|                         } | |||
|                     } | |||
|                     STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); | |||
|                     preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), typename SparseModelType::RewardModelType(boost::none, std::move(objectiveRewards))); | |||
|                 } | |||
|                          | |||
|             private: | |||
|                 std::shared_ptr<storm::logic::Formula const> relevantStateFormula; | |||
|                 std::shared_ptr<storm::logic::Formula const> goalStateFormula; | |||
|             }; | |||
|              | |||
|             // Transforms expected reachability rewards to total expected rewards by adding a rewardModel | |||
|             // such that non-relevant states get reward zero | |||
|             template <typename SparseModelType> | |||
|             class SparseMultiObjectivePreprocessorReachRewToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { | |||
|             public: | |||
|                 SparseMultiObjectivePreprocessorReachRewToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula, std::string const& originalRewardModelName) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula), originalRewardModelName(originalRewardModelName) { | |||
|                     // Intentionally left empty | |||
|                 } | |||
|                  | |||
|                 virtual void perform(SparseModelType& preprocessedModel) const override  { | |||
|                         | |||
|                     // build stateAction reward vector that only gives reward for relevant states | |||
|                     storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); | |||
|                     storm::storage::BitVector nonRelevantStates = ~mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); | |||
|                     typename SparseModelType::RewardModelType objectiveRewards = preprocessedModel.getRewardModel(originalRewardModelName); | |||
|                     objectiveRewards.reduceToStateBasedRewards(preprocessedModel.getTransitionMatrix(), false); | |||
|                     if (objectiveRewards.hasStateRewards()) { | |||
|                         storm::utility::vector::setVectorValues(objectiveRewards.getStateRewardVector(), nonRelevantStates, storm::utility::zero<typename SparseModelType::ValueType>()); | |||
|                     } | |||
|                     if (objectiveRewards.hasStateActionRewards()) { | |||
|                         for (auto state : nonRelevantStates) { | |||
|                             std::fill_n(objectiveRewards.getStateActionRewardVector().begin() + preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state], preprocessedModel.getTransitionMatrix().getRowGroupSize(state), storm::utility::zero<typename SparseModelType::ValueType>()); | |||
|                         } | |||
|                     } | |||
|                     STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); | |||
|                     preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), std::move(objectiveRewards)); | |||
|                 } | |||
|                          | |||
|             private: | |||
|                 std::shared_ptr<storm::logic::Formula const> relevantStateFormula; | |||
|                 std::string originalRewardModelName; | |||
|             }; | |||
|                          | |||
|             // Transforms expected reachability time to total expected rewards by adding a rewardModel | |||
|             // such that every time step done from a relevant state yields one reward | |||
|             template <typename SparseModelType> | |||
|             class SparseMultiObjectivePreprocessorReachTimeToTotalRewTask : public SparseMultiObjectivePreprocessorTask<SparseModelType> { | |||
|             public: | |||
|                 SparseMultiObjectivePreprocessorReachTimeToTotalRewTask(std::shared_ptr<Objective<typename SparseModelType::ValueType>> const& objective, std::shared_ptr<storm::logic::Formula const> const& relevantStateFormula) : SparseMultiObjectivePreprocessorTask<SparseModelType>(objective), relevantStateFormula(relevantStateFormula) { | |||
|                     // Intentionally left empty | |||
|                 } | |||
|                  | |||
|                 virtual void perform(SparseModelType& preprocessedModel) const override  { | |||
|                         | |||
|                     // build stateAction reward vector that only gives reward for relevant states | |||
|                     storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(preprocessedModel); | |||
|                     storm::storage::BitVector relevantStates = mc.check(*relevantStateFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector(); | |||
|                      | |||
|                     std::vector<typename SparseModelType::ValueType> timeRewards(preprocessedModel.getNumberOfStates(), storm::utility::zero<typename SparseModelType::ValueType>()); | |||
|                     storm::utility::vector::setVectorValues(timeRewards, dynamic_cast<storm::models::sparse::MarkovAutomaton<typename SparseModelType::ValueType> const&>(preprocessedModel).getMarkovianStates() & relevantStates, storm::utility::one<typename SparseModelType::ValueType>()); | |||
|                     STORM_LOG_ASSERT(this->objective->rewardModelName.is_initialized(), "No reward model name has been specified"); | |||
|                     preprocessedModel.addRewardModel(this->objective->rewardModelName.get(), typename SparseModelType::RewardModelType(std::move(timeRewards))); | |||
|                 } | |||
|                          | |||
|             private: | |||
|                 std::shared_ptr<storm::logic::Formula const> relevantStateFormula; | |||
|             }; | |||
|              | |||
|         } | |||
|     } | |||
| } | |||
| 
 | |||
						Write
						Preview
					
					
					Loading…
					
					Cancel
						Save
					
		Reference in new issue