|
|
@ -200,7 +200,7 @@ namespace storm { |
|
|
|
|
|
|
|
template <typename ValueType, typename RewardModelType> |
|
|
|
std::vector<ValueType> SparseMarkovAutomatonCslHelper::computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) { |
|
|
|
std::vector<ValueType> stateRewardWeights(transitionMatrix.getRowGroupCount()); |
|
|
|
std::vector<ValueType> stateRewardWeights(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>()); |
|
|
|
for (auto const markovianState : markovianStates) { |
|
|
|
stateRewardWeights[markovianState] = storm::utility::one<ValueType>() / exitRateVector[markovianState]; |
|
|
|
} |
|
|
@ -382,10 +382,10 @@ namespace storm { |
|
|
|
|
|
|
|
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); |
|
|
|
|
|
|
|
// First, we need to check which states have infinite expected time (by definition).
|
|
|
|
// First, we need to check which states have infinite expected reward (by definition).
|
|
|
|
storm::storage::BitVector infinityStates; |
|
|
|
if (dir == OptimizationDirection::Minimize) { |
|
|
|
// If we need to compute the minimum expected times, we have to set the values of those states to infinity that, under all schedulers,
|
|
|
|
// If we need to compute the minimum expected rewards, we have to set the values of those states to infinity that, under all schedulers,
|
|
|
|
// reach a bottom SCC without a goal state.
|
|
|
|
|
|
|
|
// So we start by computing all bottom SCCs without goal states.
|
|
|
@ -406,8 +406,7 @@ namespace storm { |
|
|
|
infinityStates = storm::utility::graph::performProbGreater0A(transitionMatrix, |
|
|
|
transitionMatrix.getRowGroupIndices(), |
|
|
|
backwardTransitions, |
|
|
|
storm::storage::BitVector( |
|
|
|
numberOfStates, true), |
|
|
|
~goalStates, |
|
|
|
unionOfNonGoalBSccs); |
|
|
|
} else { |
|
|
|
// Otherwise, we have no infinity states.
|
|
|
@ -432,8 +431,7 @@ namespace storm { |
|
|
|
if (!unionOfNonGoalMaximalEndComponents.empty()) { |
|
|
|
// Now we need to check for which states there exists a scheduler that reaches one of the previously computed states.
|
|
|
|
infinityStates = storm::utility::graph::performProbGreater0E(backwardTransitions, |
|
|
|
storm::storage::BitVector( |
|
|
|
numberOfStates, true), |
|
|
|
~goalStates, |
|
|
|
unionOfNonGoalMaximalEndComponents); |
|
|
|
} else { |
|
|
|
// Otherwise, we have no infinity states.
|
|
|
@ -447,17 +445,27 @@ namespace storm { |
|
|
|
std::vector<ValueType> result(numberOfStates); |
|
|
|
|
|
|
|
if (!maybeStates.empty()) { |
|
|
|
|
|
|
|
// Then, we can eliminate the rows and columns for all states whose values are already known.
|
|
|
|
std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); |
|
|
|
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, |
|
|
|
maybeStates); |
|
|
|
|
|
|
|
// Finally, prepare the actual right-hand side.
|
|
|
|
std::vector<ValueType> b(submatrix.getRowCount()); |
|
|
|
storm::utility::vector::selectVectorValues(b, maybeStates, |
|
|
|
storm::storage::SparseMatrix<ValueType> submatrix; |
|
|
|
std::vector<ValueType> b; |
|
|
|
if (infinityStates.empty()) { |
|
|
|
submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates); |
|
|
|
b.resize(submatrix.getRowCount()); |
|
|
|
storm::utility::vector::selectVectorValues(b, maybeStates, |
|
|
|
transitionMatrix.getRowGroupIndices(), |
|
|
|
stateActionRewardVector); |
|
|
|
} else { |
|
|
|
// If there are infinity states, we also have to eliminate the choices that lead from a maybe state to an infinity state
|
|
|
|
storm::storage::BitVector selectedChoices = transitionMatrix.getRowFilter(maybeStates, ~infinityStates); |
|
|
|
submatrix = transitionMatrix.getSubmatrix(false, selectedChoices, maybeStates); |
|
|
|
b.resize(submatrix.getRowCount()); |
|
|
|
storm::utility::vector::selectVectorValues(b, selectedChoices, stateActionRewardVector); |
|
|
|
} |
|
|
|
|
|
|
|
// Initialize the solution vector
|
|
|
|
std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); |
|
|
|
|
|
|
|
// Solve the corresponding system of equations.
|
|
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create( |
|
|
|
submatrix); |
|
|
|