diff --git a/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
index 0893a8ac4..f54bed203 100644
--- a/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
+++ b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
@@ -70,19 +70,20 @@ namespace storm {
                     storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
                     subvector = subvector.sumAbstract(model.getColumnVariables());
                     
-                    // Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
-                    // for solving the equation system (i.e. compute (I-A)).
+                    // Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
+                    std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
+                    
+                    // Finally cut away all columns targeting non-maybe states.
                     submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
                     
                     // Create the solution vector.
                     std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
                     
                     // Translate the symbolic matrix/vector to their explicit representations and solve the equation system.
-                    storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
-                    std::vector<ValueType> b = subvector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitSubmatrix.getRowGroupIndices());
+                    std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
                     
-                    std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
-                    solver->solveEquationSystem(minimize, x, b);
+                    std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
+                    solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
                     
                     // Return a hybrid check result that stores the numerical values explicitly.
                     return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x));
@@ -138,7 +139,7 @@ namespace storm {
                 statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates);
             }
             storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
-            
+                        
             // If there are maybe states, we need to perform matrix-vector multiplications.
             if (!maybeStates.isZero()) {
                 // Create the ODD for the translation between symbolic and explicit storage.
@@ -156,6 +157,9 @@ namespace storm {
                 storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
                 storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
                 
+                // Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
+                std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
+                
                 // Finally cut away all columns targeting non-maybe states.
                 submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
                 
@@ -163,11 +167,10 @@ namespace storm {
                 std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>());
                 
                 // Translate the symbolic matrix/vector to their explicit representations.
-                storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
-                std::vector<ValueType> b = subvector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitSubmatrix.getRowGroupIndices());
+                std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
                 
-                std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
-                solver->performMatrixVectorMultiplication(minimize, x, &b, stepBound);
+                std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
+                solver->performMatrixVectorMultiplication(minimize, x, &explicitRepresentation.second, stepBound);
                 
                 // Return a hybrid check result that stores the numerical values explicitly.
                 return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x));
@@ -259,9 +262,9 @@ namespace storm {
             storm::dd::Bdd<DdType> infinityStates;
             storm::dd::Bdd<DdType> transitionMatrixBdd = transitionMatrix.notZero();
             if (minimize) {
-                infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getManager().getBddZero(), targetStates));
+                infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
             } else {
-                infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getManager().getBddZero(), targetStates));
+                infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
             }
             infinityStates = !infinityStates && model.getReachableStates();
             storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
@@ -293,21 +296,22 @@ namespace storm {
                         subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
                     }
                     
-                    // Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
-                    // for solving the equation system (i.e. compute (I-A)).
+                    // Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
+                    std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
+                    
+                    // Finally cut away all columns targeting non-maybe states.
                     submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
                     
                     // Create the solution vector.
                     std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
                     
                     // Translate the symbolic matrix/vector to their explicit representations.
-                    storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
-                    std::vector<ValueType> b = subvector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitSubmatrix.getRowGroupIndices());
+                    std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
                     
                     // Now solve the resulting equation system.
-                    std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
-                    solver->solveEquationSystem(minimize, x, b);
-                    
+                    std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
+                    solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
+                                        
                     // Return a hybrid check result that stores the numerical values explicitly.
                     return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x));
                 } else {
diff --git a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
index 0d46f40c9..ca2c19212 100644
--- a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
+++ b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
@@ -297,6 +297,7 @@ namespace storm {
                 std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory.create(submatrix);
                 solver->solveEquationSystem(minimize, x, b);
                 
+                
                 // Set values of resulting vector according to result.
                 storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
             }
diff --git a/src/storage/dd/CuddAdd.cpp b/src/storage/dd/CuddAdd.cpp
index 1dbf60803..6b7f2067f 100644
--- a/src/storage/dd/CuddAdd.cpp
+++ b/src/storage/dd/CuddAdd.cpp
@@ -424,7 +424,7 @@ namespace storm {
         std::vector<ValueType> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const {
             std::vector<ValueType> result(rowOdd.getTotalOffset());
             std::vector<uint_fast64_t> ddVariableIndices = this->getSortedVariableIndices();
-            addToVectorRec(this->getCuddDdNode(), 0, ddVariableIndices.size(), 0, rowOdd, ddVariableIndices, result);
+            addToVector(rowOdd, ddVariableIndices, result);
             return result;
         }
         
@@ -577,6 +577,7 @@ namespace storm {
                 }
             }
             
+            // Create the canonical row group sizes and build the matrix.
             return toMatrix(rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd);
         }
         
@@ -585,6 +586,7 @@ namespace storm {
             std::vector<uint_fast64_t> ddColumnVariableIndices;
             std::vector<uint_fast64_t> ddGroupVariableIndices;
             std::set<storm::expressions::Variable> rowAndColumnMetaVariables;
+            boost::optional<std::vector<double>> optionalExplicitVector;
             
             for (auto const& variable : rowMetaVariables) {
                 DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable);
@@ -610,8 +612,6 @@ namespace storm {
             }
             std::sort(ddGroupVariableIndices.begin(), ddGroupVariableIndices.end());
             
-            // TODO: assert that the group variables are at the very top of the variable ordering?
-            
             // Start by computing the offsets (in terms of rows) for each row group.
             Add<DdType::CUDD> stateToNumberOfChoices = this->notZero().existsAbstract(columnMetaVariables).toAdd().sumAbstract(groupMetaVariables);
             std::vector<uint_fast64_t> rowGroupIndices = stateToNumberOfChoices.toVector<uint_fast64_t>(rowOdd);
@@ -635,21 +635,22 @@ namespace storm {
             
             // Now compute the indices at which the individual rows start.
             std::vector<uint_fast64_t> rowIndications(rowGroupIndices.back() + 1);
+            
             std::vector<storm::dd::Add<DdType::CUDD>> statesWithGroupEnabled(groups.size());
+            storm::dd::Add<storm::dd::DdType::CUDD> stateToRowGroupCount = this->getDdManager()->getAddZero();
             for (uint_fast64_t i = 0; i < groups.size(); ++i) {
                 auto const& dd = groups[i];
                 
                 toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, false);
                 
                 statesWithGroupEnabled[i] = dd.notZero().existsAbstract(columnMetaVariables).toAdd();
-                addToVectorRec(statesWithGroupEnabled[i].getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices);
+                stateToRowGroupCount += statesWithGroupEnabled[i];
+                statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices);
             }
             
             // Since we modified the rowGroupIndices, we need to restore the correct values.
-            for (uint_fast64_t i = rowGroupIndices.size() - 1; i > 0; --i) {
-                rowGroupIndices[i] = rowGroupIndices[i - 1];
-            }
-            rowGroupIndices[0] = 0;
+            std::function<uint_fast64_t (uint_fast64_t const&, double const&)> fct = [] (uint_fast64_t const& a, double const& b) -> uint_fast64_t { return a - static_cast<uint_fast64_t>(b); };
+            modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct);
             
             // Now that we computed the number of entries in each row, compute the corresponding offsets in the entry vector.
             tmp = 0;
@@ -667,26 +668,147 @@ namespace storm {
                 
                 toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, true);
                 
-                addToVectorRec(statesWithGroupEnabled[i].getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices);
+                statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices);
             }
             
             // Since we modified the rowGroupIndices, we need to restore the correct values.
-            for (uint_fast64_t i = rowGroupIndices.size() - 1; i > 0; --i) {
-                rowGroupIndices[i] = rowGroupIndices[i - 1];
+            modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct);
+            
+            // Since the last call to toMatrixRec modified the rowIndications, we need to restore the correct values.
+            for (uint_fast64_t i = rowIndications.size() - 1; i > 0; --i) {
+                rowIndications[i] = rowIndications[i - 1];
+            }
+            rowIndications[0] = 0;
+            
+            return storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices));
+        }
+        
+        std::pair<storm::storage::SparseMatrix<double>, std::vector<double>> Add<DdType::CUDD>::toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const {
+            std::set<storm::expressions::Variable> rowMetaVariables;
+            std::set<storm::expressions::Variable> columnMetaVariables;
+            
+            for (auto const& variable : this->getContainedMetaVariables()) {
+                // If the meta variable is a group meta variable, we do not insert it into the set of row/column meta variables.
+                if (groupMetaVariables.find(variable) != groupMetaVariables.end()) {
+                    continue;
+                }
+                
+                if (variable.getName().size() > 0 && variable.getName().back() == '\'') {
+                    columnMetaVariables.insert(variable);
+                } else {
+                    rowMetaVariables.insert(variable);
+                }
+            }
+            
+            // Create the canonical row group sizes and build the matrix.
+            return toMatrixVector(vector, std::move(rowGroupSizes), rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd);
+        }
+        
+        std::pair<storm::storage::SparseMatrix<double>,std::vector<double>> Add<DdType::CUDD>::toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupIndices, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const {
+            std::vector<uint_fast64_t> ddRowVariableIndices;
+            std::vector<uint_fast64_t> ddColumnVariableIndices;
+            std::vector<uint_fast64_t> ddGroupVariableIndices;
+            std::set<storm::expressions::Variable> rowAndColumnMetaVariables;
+
+            for (auto const& variable : rowMetaVariables) {
+                DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable);
+                for (auto const& ddVariable : metaVariable.getDdVariables()) {
+                    ddRowVariableIndices.push_back(ddVariable.getIndex());
+                }
+                rowAndColumnMetaVariables.insert(variable);
+            }
+            std::sort(ddRowVariableIndices.begin(), ddRowVariableIndices.end());
+            for (auto const& variable : columnMetaVariables) {
+                DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable);
+                for (auto const& ddVariable : metaVariable.getDdVariables()) {
+                    ddColumnVariableIndices.push_back(ddVariable.getIndex());
+                }
+                rowAndColumnMetaVariables.insert(variable);
+            }
+            std::sort(ddColumnVariableIndices.begin(), ddColumnVariableIndices.end());
+            for (auto const& variable : groupMetaVariables) {
+                DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable);
+                for (auto const& ddVariable : metaVariable.getDdVariables()) {
+                    ddGroupVariableIndices.push_back(ddVariable.getIndex());
+                }
+            }
+            std::sort(ddGroupVariableIndices.begin(), ddGroupVariableIndices.end());
+            
+            // Transform the row group sizes to the actual row group indices.
+            rowGroupIndices.resize(rowGroupIndices.size() + 1);
+            uint_fast64_t tmp = 0;
+            uint_fast64_t tmp2 = 0;
+            for (uint_fast64_t i = 1; i < rowGroupIndices.size(); ++i) {
+                tmp2 = rowGroupIndices[i];
+                rowGroupIndices[i] = rowGroupIndices[i - 1] + tmp;
+                std::swap(tmp, tmp2);
             }
             rowGroupIndices[0] = 0;
             
+            // Create the explicit vector we need to fill later.
+            std::vector<double> explicitVector(rowGroupIndices.back());
+            
+            // Next, we split the matrix into one for each group. This only works if the group variables are at the very
+            // top.
+            std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>> groups;
+            splitGroupsRec(this->getCuddDdNode(), vector.getCuddDdNode(), groups, ddGroupVariableIndices, 0, ddGroupVariableIndices.size(), rowAndColumnMetaVariables, rowMetaVariables);
+            
+            // Create the actual storage for the non-zero entries.
+            std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> columnsAndValues(this->getNonZeroCount());
+            
+            // Now compute the indices at which the individual rows start.
+            std::vector<uint_fast64_t> rowIndications(rowGroupIndices.back() + 1);
+
+            std::vector<storm::dd::Add<DdType::CUDD>> statesWithGroupEnabled(groups.size());
+            storm::dd::Add<storm::dd::DdType::CUDD> stateToRowGroupCount = this->getDdManager()->getAddZero();
+            for (uint_fast64_t i = 0; i < groups.size(); ++i) {
+                std::pair<storm::dd::Add<DdType::CUDD>, storm::dd::Add<DdType::CUDD>> ddPair = groups[i];
+                
+                toMatrixRec(ddPair.first.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, false);
+                toVectorRec(ddPair.second.getCuddDdNode(), explicitVector, rowGroupIndices, rowOdd, 0, ddRowVariableIndices.size(), 0, ddRowVariableIndices);
+                
+                statesWithGroupEnabled[i] = (ddPair.first.notZero().existsAbstract(columnMetaVariables) || ddPair.second.notZero()).toAdd();
+                stateToRowGroupCount += statesWithGroupEnabled[i];
+                statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices);
+            }
+            
+            // Since we modified the rowGroupIndices, we need to restore the correct values.
+            std::function<uint_fast64_t (uint_fast64_t const&, double const&)> fct = [] (uint_fast64_t const& a, double const& b) -> uint_fast64_t { return a - static_cast<uint_fast64_t>(b); };
+            modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct);
+            
+            // Now that we computed the number of entries in each row, compute the corresponding offsets in the entry vector.
+            tmp = 0;
+            tmp2 = 0;
+            for (uint_fast64_t i = 1; i < rowIndications.size(); ++i) {
+                tmp2 = rowIndications[i];
+                rowIndications[i] = rowIndications[i - 1] + tmp;
+                std::swap(tmp, tmp2);
+            }
+            rowIndications[0] = 0;
+            
+            // Now actually fill the entry vector.
+            for (uint_fast64_t i = 0; i < groups.size(); ++i) {
+                auto const& dd = groups[i].first;
+                
+                toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, true);
+                
+                statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices);
+            }
+            
+            // Since we modified the rowGroupIndices, we need to restore the correct values.
+            modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct);
+            
             // Since the last call to toMatrixRec modified the rowIndications, we need to restore the correct values.
             for (uint_fast64_t i = rowIndications.size() - 1; i > 0; --i) {
                 rowIndications[i] = rowIndications[i - 1];
             }
             rowIndications[0] = 0;
             
-            return storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices));
+            return std::make_pair(storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)), std::move(explicitVector));
         }
         
         template<typename ValueType>
-        void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t>& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const {
+        void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const {
             // For the empty DD, we do not need to add any entries.
             if (dd == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) {
                 return;
@@ -695,7 +817,6 @@ namespace storm {
             // If we are at the maximal level, the value to be set is stored as a constant in the DD.
             if (currentRowLevel == maxLevel) {
                 result[rowGroupOffsets[currentRowOffset]] = Cudd_V(dd);
-                ++rowGroupOffsets[currentRowOffset];
             } else if (ddRowVariableIndices[currentRowLevel] < dd->index) {
                 toVectorRec(dd, result, rowGroupOffsets, rowOdd.getElseSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices);
                 toVectorRec(dd, result, rowGroupOffsets, rowOdd.getThenSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices);
@@ -774,8 +895,39 @@ namespace storm {
             }
         }
         
+        void Add<DdType::CUDD>::splitGroupsRec(DdNode* dd1, DdNode* dd2, std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables1, std::set<storm::expressions::Variable> const& remainingMetaVariables2) const {
+            // For the empty DD, we do not need to create a group.
+            if (dd1 == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager()) && dd2 == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) {
+                return;
+            }
+            
+            if (currentLevel == maxLevel) {
+                groups.push_back(std::make_pair(Add<DdType::CUDD>(this->getDdManager(), ADD(this->getDdManager()->getCuddManager(), dd1), remainingMetaVariables1), Add<DdType::CUDD>(this->getDdManager(), ADD(this->getDdManager()->getCuddManager(), dd2), remainingMetaVariables2)));
+            } else if (ddGroupVariableIndices[currentLevel] < dd1->index) {
+                if (ddGroupVariableIndices[currentLevel] < dd2->index) {
+                    splitGroupsRec(dd1, dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                    splitGroupsRec(dd1, dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                } else {
+                    splitGroupsRec(dd1, Cudd_T(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                    splitGroupsRec(dd1, Cudd_E(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                }
+            } else if (ddGroupVariableIndices[currentLevel] < dd2->index) {
+                splitGroupsRec(Cudd_T(dd1), dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                splitGroupsRec(Cudd_E(dd1), dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+            } else {
+                splitGroupsRec(Cudd_T(dd1), Cudd_T(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+                splitGroupsRec(Cudd_E(dd1), Cudd_E(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2);
+            }
+        }
+        
         template<typename ValueType>
-        void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const {
+        void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const {
+            std::function<ValueType (ValueType const&, double const&)> fct = [] (ValueType const& a, double const& b) -> ValueType { return a + b; };
+            modifyVectorRec(this->getCuddDdNode(), 0, ddVariableIndices.size(), 0, odd, ddVariableIndices, targetVector, fct);
+        }
+        
+        template<typename ValueType>
+        void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector, std::function<ValueType (ValueType const&, double const&)> const& function) const {
             // For the empty DD, we do not need to add any entries.
             if (dd == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) {
                 return;
@@ -783,16 +935,16 @@ namespace storm {
             
             // If we are at the maximal level, the value to be set is stored as a constant in the DD.
             if (currentLevel == maxLevel) {
-                targetVector[currentOffset] += static_cast<ValueType>(Cudd_V(dd));
+                targetVector[currentOffset] = function(targetVector[currentOffset], Cudd_V(dd));
             } else if (ddVariableIndices[currentLevel] < dd->index) {
                 // If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set
                 // and for the one in which it is not set.
-                addToVectorRec(dd, currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector);
-                addToVectorRec(dd, currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector);
+                modifyVectorRec(dd, currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector, function);
+                modifyVectorRec(dd, currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector, function);
             } else {
                 // Otherwise, we simply recursively call the function for both (different) cases.
-                addToVectorRec(Cudd_E(dd), currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector);
-                addToVectorRec(Cudd_T(dd), currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector);
+                modifyVectorRec(Cudd_E(dd), currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector, function);
+                modifyVectorRec(Cudd_T(dd), currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector, function);
             }
         }
         
@@ -910,11 +1062,14 @@ namespace storm {
         // Explicitly instantiate some templated functions.
         template std::vector<double> Add<DdType::CUDD>::toVector() const;
         template std::vector<double> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const;
-        template void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector) const;
+        template void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector) const;
+        template void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector, std::function<double (double const&, double const&)> const& function) const;
         template std::vector<double> Add<DdType::CUDD>::toVector(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, std::vector<uint_fast64_t> groupOffsets) const;
-        template void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<double>& result, std::vector<uint_fast64_t>& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const;
+        template void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<double>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const;
         template std::vector<uint_fast64_t> Add<DdType::CUDD>::toVector() const;
         template std::vector<uint_fast64_t> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const;
-        template void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector) const;
+        template void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector) const;
+        template void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector, std::function<uint_fast64_t (uint_fast64_t const&, double const&)> const& function) const;
+
     }
 }
\ No newline at end of file
diff --git a/src/storage/dd/CuddAdd.h b/src/storage/dd/CuddAdd.h
index 6b91e514b..01a57b629 100644
--- a/src/storage/dd/CuddAdd.h
+++ b/src/storage/dd/CuddAdd.h
@@ -1,6 +1,8 @@
 #ifndef STORM_STORAGE_DD_CUDDADD_H_
 #define STORM_STORAGE_DD_CUDDADD_H_
 
+#include <boost/optional.hpp>
+
 #include "src/storage/dd/Add.h"
 #include "src/storage/dd/CuddDd.h"
 #include "src/storage/dd/CuddDdForwardIterator.h"
@@ -581,20 +583,21 @@ namespace storm {
              * @return The matrix that is represented by this ADD.
              */
             storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const;
-            
+                        
             /*!
-             * Converts the ADD to a row-grouped (sparse) double matrix. The given offset-labeled DDs are used to
-             * determine the correct row and column, respectively, for each entry. Note: this function assumes that
-             * the meta variables used to distinguish different row groups are at the very top of the ADD.
+             * Converts the ADD to a row-grouped (sparse) double matrix and the given vector to a row-grouped vector.
+             * The given offset-labeled DDs are used to determine the correct row and column, respectively, for each
+             * entry. Note: this function assumes that the meta variables used to distinguish different row groups are
+             * at the very top of the ADD.
              *
-             * @param rowMetaVariables The meta variables that encode the rows of the matrix.
-             * @param columnMetaVariables The meta variables that encode the columns of the matrix.
+             * @param vector The symbolic vector to convert.
+             * @param rowGroupSizes A vector specifying the sizes of the row groups.
              * @param groupMetaVariables The meta variables that are used to distinguish different row groups.
              * @param rowOdd The ODD used for determining the correct row.
              * @param columnOdd The ODD used for determining the correct column.
              * @return The matrix that is represented by this ADD.
              */
-            storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const;
+            std::pair<storm::storage::SparseMatrix<double>, std::vector<double>> toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const;
             
             /*!
              * Exports the DD to the given file in the dot format.
@@ -656,6 +659,40 @@ namespace storm {
              */
             Add(std::shared_ptr<DdManager<DdType::CUDD> const> ddManager, ADD cuddAdd, std::set<storm::expressions::Variable> const& containedMetaVariables = std::set<storm::expressions::Variable>());
             
+            /*!
+             * Converts the ADD to a row-grouped (sparse) double matrix. If the optional vector is given, it is also
+             * translated to an explicit row-grouped vector with the same row-grouping. The given offset-labeled DDs
+             * are used to determine the correct row and column, respectively, for each entry. Note: this function
+             * assumes that the meta variables used to distinguish different row groups are at the very top of the ADD.
+             *
+             * @param rowMetaVariables The meta variables that encode the rows of the matrix.
+             * @param columnMetaVariables The meta variables that encode the columns of the matrix.
+             * @param groupMetaVariables The meta variables that are used to distinguish different row groups.
+             * @param rowOdd The ODD used for determining the correct row.
+             * @param columnOdd The ODD used for determining the correct column.
+             * @return The matrix that is represented by this ADD and and a vector corresponding to the symbolic vector
+             * (if it was given).
+             */
+            storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const;
+            
+            /*!
+             * Converts the ADD to a row-grouped (sparse) double matrix and the given vector to an equally row-grouped
+             * explicit vector. The given offset-labeled DDs are used to determine the correct row and column,
+             * respectively, for each entry. Note: this function assumes that the meta variables used to distinguish
+             * different row groups are at the very top of the ADD.
+             *
+             * @param vector The vector that is to be transformed to an equally grouped explicit vector.
+             * @param rowGroupSizes A vector specifying the sizes of the row groups.
+             * @param rowMetaVariables The meta variables that encode the rows of the matrix.
+             * @param columnMetaVariables The meta variables that encode the columns of the matrix.
+             * @param groupMetaVariables The meta variables that are used to distinguish different row groups.
+             * @param rowOdd The ODD used for determining the correct row.
+             * @param columnOdd The ODD used for determining the correct column.
+             * @return The matrix that is represented by this ADD and and a vector corresponding to the symbolic vector
+             * (if it was given).
+             */
+            std::pair<storm::storage::SparseMatrix<double>,std::vector<double>> toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const;
+            
             /*!
              * Helper function to convert the DD into a (sparse) matrix.
              *
@@ -688,9 +725,7 @@ namespace storm {
              *
              * @param dd The DD to convert.
              * @param result The vector that will hold the values upon successful completion.
-             * @param rowGroupOffsets The row offsets at which a given row group starts. Note this vector is modified in
-             * the computation. More concretely, each entry i in the vector will be increased by one iff there was a
-             * non-zero entry in that row-group.
+             * @param rowGroupOffsets The row offsets at which a given row group starts.
              * @param rowOdd The ODD used for the row translation.
              * @param currentRowLevel The currently considered row level in the DD.
              * @param maxLevel The number of levels that need to be considered.
@@ -698,7 +733,7 @@ namespace storm {
              * @param ddRowVariableIndices The (sorted) indices of all DD row variables that need to be considered.
              */
             template<typename ValueType>
-            void toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t>& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const;
+            void toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const;
             
             /*!
              * Splits the given matrix DD into the groups using the given group variables.
@@ -713,7 +748,32 @@ namespace storm {
             void splitGroupsRec(DdNode* dd, std::vector<Add<DdType::CUDD>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables) const;
             
             /*!
-             * Performs a recursive step to add the given DD-based vector to the given explicit vector.
+             * Splits the given matrix and vector DDs into the groups using the given group variables.
+             *
+             * @param dd1 The matrix DD to split.
+             * @param dd2 The vector DD to split.
+             * @param groups A vector that is to be filled with the pairs of matrix/vector DDs for the individual groups.
+             * @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered.
+             * @param currentLevel The currently considered level in the DD.
+             * @param maxLevel The number of levels that need to be considered.
+             * @param remainingMetaVariables1 The meta variables that remain in the matrix DD after the groups have been split.
+             * @param remainingMetaVariables2 The meta variables that remain in the vector DD after the groups have been split.
+             */
+            void splitGroupsRec(DdNode* dd1, DdNode* dd2, std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables1, std::set<storm::expressions::Variable> const& remainingMetaVariables2) const;
+            
+            /*!
+             * Adds the current (DD-based) vector to the given explicit one.
+             *
+             * @param odd The ODD used for the translation.
+             * @param ddVariableIndices The (sorted) indices of all DD variables that need to be considered.
+             * @param targetVector The vector to which the translated DD-based vector is to be added.
+             */
+            template<typename ValueType>
+            void addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const;
+            
+            /*!
+             * Performs a recursive step to perform the given function between the given DD-based vector to the given
+             * explicit vector.
              *
              * @param dd The DD to add to the explicit vector.
              * @param currentLevel The currently considered level in the DD.
@@ -724,7 +784,7 @@ namespace storm {
              * @param targetVector The vector to which the translated DD-based vector is to be added.
              */
             template<typename ValueType>
-            void addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const;
+            void modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector, std::function<ValueType (ValueType const&, double const&)> const& function) const;
             
             /*!
              * Builds an ADD representing the given vector.
diff --git a/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp
new file mode 100644
index 000000000..3a7cd5402
--- /dev/null
+++ b/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp
@@ -0,0 +1,190 @@
+#include "gtest/gtest.h"
+#include "storm-config.h"
+
+#include "src/logic/Formulas.h"
+#include "src/utility/solver.h"
+#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h"
+#include "src/modelchecker/results/HybridQuantitativeCheckResult.h"
+#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
+#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
+#include "src/parser/PrismParser.h"
+#include "src/builder/DdPrismModelBuilder.h"
+#include "src/models/symbolic/Dtmc.h"
+#include "src/settings/SettingsManager.h"
+
+TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice) {
+    storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
+    
+    // Build the die model with its reward model.
+    typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
+    options.buildRewards = true;
+    options.rewardModelName = "coinflips";
+    std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options);
+    EXPECT_EQ(169, model->getNumberOfStates());
+    EXPECT_EQ(436, model->getNumberOfTransitions());
+    
+    ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
+    
+    std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>();
+    
+    storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory<double>()));
+    
+    auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two");
+    auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
+    auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
+    
+    std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
+    
+    result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three");
+    eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
+    minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
+    
+    result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
+    
+    result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("four");
+    eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
+    minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
+    
+    result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
+    
+    result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
+    auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
+    auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
+    
+    result = checker.check(*minRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
+    
+    result = checker.check(*maxRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+}
+
+TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
+    storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
+    
+    // Build the die model with its reward model.
+    typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
+    options.buildRewards = true;
+    options.rewardModelName = "rounds";
+    std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options);
+    EXPECT_EQ(3172, model->getNumberOfStates());
+    EXPECT_EQ(7144, model->getNumberOfTransitions());
+    
+    ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
+    
+    std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>();
+    
+    storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory<double>()));
+    
+    auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
+    auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula);
+    auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
+    
+    std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
+    
+    result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
+    auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true);
+    auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 25);
+    minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula);
+    
+    result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula);
+    
+    result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
+    auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula);
+    auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
+    
+    result = checker.check(*minRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    
+    auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
+    
+    result = checker.check(*maxRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    
+    EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+}
diff --git a/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp
index ccc9ed7e3..1b1af244d 100644
--- a/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp
+++ b/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp
@@ -97,8 +97,8 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, Dice) {
     result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
-    EXPECT_NEAR(7.333329499, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
-    EXPECT_NEAR(7.333329499, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
     
     auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
     
@@ -106,8 +106,8 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, Dice) {
     result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
-    EXPECT_NEAR(7.333329499, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
-    EXPECT_NEAR(7.333329499, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
 }
 
 TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
@@ -118,8 +118,8 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     options.buildRewards = true;
     options.rewardModelName = "rounds";
     std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options);
-    EXPECT_EQ(169, model->getNumberOfStates());
-    EXPECT_EQ(436, model->getNumberOfTransitions());
+    EXPECT_EQ(3172, model->getNumberOfStates());
+    EXPECT_EQ(7144, model->getNumberOfTransitions());
     
     ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
     
@@ -132,7 +132,8 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula);
     
     std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula);
-    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
     EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
     EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
@@ -140,7 +141,8 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula);
     
     result = checker.check(*maxProbabilityOperatorFormula);
-    storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
+    storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
     EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
     EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
@@ -151,6 +153,7 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula);
     
     result = checker.check(*minProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
     EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
@@ -159,6 +162,7 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula);
     
     result = checker.check(*maxProbabilityOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
     EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
@@ -169,16 +173,18 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
     auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula);
     
     result = checker.check(*minRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
-    EXPECT_NEAR(4.285689611, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
-    EXPECT_NEAR(4.285689611, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
     
     auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula);
     
     result = checker.check(*maxRewardOperatorFormula);
+    result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
     storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>();
     
-    EXPECT_NEAR(4.285689611, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
-    EXPECT_NEAR(4.285689611, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
+    EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
 }
diff --git a/test/functional/storage/CuddDdTest.cpp b/test/functional/storage/CuddDdTest.cpp
index 6255e912c..f8b149c2d 100644
--- a/test/functional/storage/CuddDdTest.cpp
+++ b/test/functional/storage/CuddDdTest.cpp
@@ -351,7 +351,7 @@ TEST(CuddDd, AddOddTest) {
     EXPECT_EQ(25, matrix.getNonzeroEntryCount());
     
     dd = manager->getRange(x.first).toAdd() * manager->getRange(x.second).toAdd() * manager->getEncoding(a.first, 0).toAdd().ite(dd, dd + manager->getConstant(1));
-    ASSERT_NO_THROW(matrix = dd.toMatrix({x.first}, {x.second}, {a.first}, rowOdd, columnOdd));
+    ASSERT_NO_THROW(matrix = dd.toMatrix({a.first}, rowOdd, columnOdd));
     EXPECT_EQ(18, matrix.getRowCount());
     EXPECT_EQ(9, matrix.getRowGroupCount());
     EXPECT_EQ(9, matrix.getColumnCount());
@@ -398,7 +398,7 @@ TEST(CuddDd, BddOddTest) {
     EXPECT_EQ(25, matrix.getNonzeroEntryCount());
     
     dd = manager->getRange(x.first).toAdd() * manager->getRange(x.second).toAdd() * manager->getEncoding(a.first, 0).toAdd().ite(dd, dd + manager->getConstant(1));
-    ASSERT_NO_THROW(matrix = dd.toMatrix({x.first}, {x.second}, {a.first}, rowOdd, columnOdd));
+    ASSERT_NO_THROW(matrix = dd.toMatrix({a.first}, rowOdd, columnOdd));
     EXPECT_EQ(18, matrix.getRowCount());
     EXPECT_EQ(9, matrix.getRowGroupCount());
     EXPECT_EQ(9, matrix.getColumnCount());