@ -22,7 +22,7 @@
# include "storm/storage/expressions/Expression.h"
# include "storm/storage/expressions/ExpressionManager.h"
# include "storm/utility/numerical.h"
//#include "storm/utility/numerical.h"
# include "storm/solver/MinMaxLinearEquationSolver.h"
# include "storm/solver/LpSolver.h"
@ -157,14 +157,19 @@ namespace storm {
void SparseMarkovAutomatonCslHelper : : computeBoundedReachabilityProbabilities ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRates , storm : : storage : : BitVector const & goalStates , storm : : storage : : BitVector const & markovianNonGoalStates , storm : : storage : : BitVector const & probabilisticNonGoalStates , std : : vector < ValueType > & markovianNonGoalValues , std : : vector < ValueType > & probabilisticNonGoalValues , ValueType delta , uint64_t numberOfSteps , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidOperationException , " Computing bounded reachability probabilities is unsupported for this value type. " ) ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : printTransitions ( std : : vector < ValueType > const & exitRateVector , storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , storm : : storage : : BitVector const & cycleStates , storm : : storage : : BitVector const & cycleGoalStates , std : : vector < std : : vector < ValueType > > & vd , std : : vector < std : : vector < ValueType > > & vu , std : : vector < std : : vector < ValueType > > & wu ) {
std : : ofstream logfile ( " U+logfile.txt " , std : : ios : : app ) ;
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : printTransitions ( const uint64_t N , ValueType const diff ,
storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix ,
std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates ,
storm : : storage : : BitVector const & psiStates , std : : vector < std : : vector < ValueType > > relReachability ,
const storage : : BitVector & cycleStates , const storage : : BitVector & cycleGoalStates ,
std : : vector < std : : vector < std : : vector < ValueType > > > & unifVectors , std : : ofstream & logfile ) {
auto const & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
auto numberOfStates = fullTransitionMatrix . getRowGroupCount ( ) ;
//Transition Matrix
logfile < < " number of states = num of row group count " < < numberOfStates < < " \n " ;
for ( uint_fast64_t i = 0 ; i < fullTransitionMatrix . getRowGroupCount ( ) ; i + + ) {
logfile < < " from node " < < i < < " " ;
@ -184,204 +189,174 @@ namespace storm {
logfile < < " \n " ;
logfile < < " probStates \t markovianStates \t goalStates \t cycleStates \t cycleGoalStates \n " ;
for ( int i = 0 ; i < markovianStates . size ( ) ; i + + ) {
logfile < < ( ~ markovianStates ) [ i ] < < " \t \t " < < markovianStates [ i ] < < " \t \t " < < psiStates [ i ] < < " \t \t " < < cycleStates [ i ] < < " \t \t " < < cycleGoalStates [ i ] < < " \n " ;
for ( int i = 0 ; i < markovianStates . size ( ) ; i + + ) {
logfile < < ( ~ markovianStates ) [ i ] < < " \t \t " < < markovianStates [ i ] < < " \t \t " < < psiStates [ i ] < < " \t \t " < < cycleStates [ i ] < < " \t \t " < < cycleGoalStates [ i ] < < " \n " ;
}
logfile < < " Iteration for N = " < < N < < " maximal difference was " < < diff < < " \n " ;
logfile < < " vd: \n " ;
for ( uint_fast 64_t i = 0 ; i < vd . size ( ) ; i + + ) {
for ( uint_fast 64_t j = 0 ; j < fullTransitionMatrix . getRowGroupCount ( ) ; j + + ) {
logfile < < vd [ i ] [ j ] < < " \t " ;
for ( uint64_t i = 0 ; i < unifVectors [ 0 ] . size ( ) ; i + + ) {
for ( uint64_t j = 0 ; j < unifVectors [ 0 ] [ i ] . size ( ) ; j + + ) {
logfile < < unifVectors [ 0 ] [ i ] [ j ] < < " \t " ;
}
logfile < < " \n " ;
}
logfile < < " \n vu: \n " ;
for ( uint_fast 64_t i = 0 ; i < v u. size ( ) ; i + + ) {
for ( uint_fast 64_t j = 0 ; j < fullTransitionMatrix . getRowGroupCount ( ) ; j + + ) {
logfile < < v u[ i ] [ j ] < < " \t " ;
for ( uint64_t i = 0 ; i < unifVectors [ 1 ] . size ( ) ; i + + ) {
for ( uint64_t j = 0 ; j < unifVectors [ 1 ] [ i ] . size ( ) ; j + + ) {
logfile < < unifVectors [ 1 ] [ i ] [ j ] < < " \t " ;
}
logfile < < " \n " ;
}
logfile < < " \n wu \n " ;
for ( uint_fast 64_t i = 0 ; i < w u. size ( ) ; i + + ) {
for ( uint_fast 64_t j = 0 ; j < fullTransitionMatrix . getRowGroupCount ( ) ; j + + ) {
logfile < < w u[ i ] [ j ] < < " \t " ;
for ( uint64_t i = 0 ; i < unifVectors [ 2 ] . size ( ) ; i + + ) {
for ( uint64_t j = 0 ; j < unifVectors [ 2 ] [ i ] . size ( ) ; j + + ) {
logfile < < unifVectors [ 2 ] [ i ] [ j ] < < " \t " ;
}
logfile < < " \n " ;
}
logfile . close ( ) ;
}
template < typename ValueType >
ValueType SparseMarkovAutomatonCslHelper : : poisson ( ValueType lambda , uint64_t i ) {
ValueType res = pow ( lambda , i ) ;
ValueType fac = 1 ;
for ( uint64_t j = i ; j > 0 ; j - - ) {
fac = fac * j ;
}
res = res / fac ;
res = res * exp ( - lambda ) ;
return res ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : computeBoundedUntilProbabilities ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : pair < double , double > const & boundsPair , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
}
void SparseMarkovAutomatonCslHelper : : calculateVu ( OptimizationDirection dir , uint64_t k , uint64_t node , ValueType lambda , std : : vector < std : : vector < ValueType > > & vu , std : : vector < std : : vector < ValueType > > & wu , storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
if ( vu [ k ] [ node ] ! = - 1 ) { return ; } //dynamic programming. avoiding multiple calculation.
uint64_t N = vu . size ( ) - 1 ;
auto rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
void SparseMarkovAutomatonCslHelper : : calculateVu ( Environment const & env , std : : vector < std : : vector < ValueType > > const & relativeReachability , OptimizationDirection dir , uint64_t k , uint64_t node , uint64_t const kind , ValueType lambda , uint64_t probSize , std : : vector < std : : vector < std : : vector < ValueType > > > & unifVectors , storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > const & solver , std : : ofstream & logfile , storm : : utility : : numerical : : FoxGlynnResult < ValueType > const & poisson ) {
if ( unifVectors [ 1 ] [ k ] [ node ] ! = - 1 ) { return ; } //dynamic programming. avoiding multiple calculation.
uint64_t N = unifVectors [ 1 ] . size ( ) - 1 ;
auto const & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
ValueType res = 0 ;
for ( uint64_t i = k ; i < N ; i + + ) {
if ( wu [ N - 1 - ( i - k ) ] [ node ] = = - 1 ) {
calculateWu ( dir , ( N - 1 - ( i - k ) ) , node , lambda , wu , fullTransitionMatrix , markovianStates , psiStates ) ;
if ( unifVectors [ 2 ] [ N - 1 - ( i - k ) ] [ node ] = = - 1 ) {
calculateUnifPlusVector ( env , N - 1 - ( i - k ) , node , 2 , lambda , probSize , relativeReachability , dir , unifVectors , fullTransitionMatrix , markovianStates , psiStates , solver , logfile , poisson ) ;
//old: relativeReachability, dir, (N-1-(i-k)),node,lambda,wu,fullTransitionMatrix,markovianStates,psiStates, solver);
}
if ( i > = poisson . left & & i < = poisson . right ) {
res + = poisson . weights [ i - poisson . left ] * unifVectors [ 2 ] [ N - 1 - ( i - k ) ] [ node ] ;
}
res + = poisson ( lambda , i ) * wu [ N - 1 - ( i - k ) ] [ node ] ;
}
vu [ k ] [ node ] = res ;
unifVectors [ 1 ] [ k ] [ node ] = res ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : calculateWu ( OptimizationDirection dir , uint64_t k , uint64_t node , ValueType lambda , std : : vector < std : : vector < ValueType > > & wu , storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
if ( wu [ k ] [ node ] ! = - 1 ) { return ; } //dynamic programming. avoiding multiple calculation.
uint64_t N = wu . size ( ) - 1 ;
auto const & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
ValueType res ;
if ( k = = N ) {
wu [ k ] [ node ] = 0 ;
return ;
}
if ( psiStates [ node ] ) {
wu [ k ] [ node ] = 1 ;
return ;
}
if ( markovianStates [ node ] ) {
res = 0 ;
auto line = fullTransitionMatrix . getRow ( rowGroupIndices [ node ] ) ;
for ( auto & element : line ) {
uint64_t to = element . getColumn ( ) ;
if ( wu [ k + 1 ] [ to ] = = - 1 ) {
calculateWu ( dir , k + 1 , to , lambda , wu , fullTransitionMatrix , markovianStates , psiStates ) ;
}
res + = element . getValue ( ) * wu [ k + 1 ] [ to ] ;
}
} else {
res = - 1 ;
uint64_t rowStart = rowGroupIndices [ node ] ;
uint64_t rowEnd = rowGroupIndices [ node + 1 ] ;
for ( uint64_t i = rowStart ; i < rowEnd ; i + + ) {
auto line = fullTransitionMatrix . getRow ( i ) ;
ValueType between = 0 ;
for ( auto & element : line ) {
uint64_t to = element . getColumn ( ) ;
if ( to = = node ) {
continue ;
}
if ( wu [ k ] [ to ] = = - 1 ) {
calculateWu ( dir , k , to , lambda , wu , fullTransitionMatrix , markovianStates , psiStates ) ;
}
between + = element . getValue ( ) * wu [ k ] [ to ] ;
}
if ( maximize ( dir ) ) {
res = std : : max ( res , between ) ;
} else {
if ( res ! = - 1 ) {
res = std : : min ( res , between ) ;
} else {
res = between ;
}
}
}
} // end no goal-prob state
wu [ k ] [ node ] = res ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : calculateUnifPlusVector ( Environment const & env , uint64_t k , uint64_t node , uint64_t const kind , ValueType lambda , uint64_t probSize ,
std : : vector < std : : vector < ValueType > > const & relativeReachability ,
OptimizationDirection dir ,
std : : vector < std : : vector < std : : vector < ValueType > > > & unifVectors ,
storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix ,
storm : : storage : : BitVector const & markovianStates ,
storm : : storage : : BitVector const & psiStates ,
std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > const & solver , std : : ofstream & logfile , storm : : utility : : numerical : : FoxGlynnResult < ValueType > const & poisson ) {
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : calculateVd ( OptimizationDirection dir , uint64_t k , uint64_t node , ValueType lambda , std : : vector < std : : vector < ValueType > > & vd , storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
std : : ofstream logfile ( " U+logfile.txt " , std : : ios : : app ) ;
if ( vd [ k ] [ node ] ! = - 1 ) { return ; } //dynamic programming. avoiding multiple calculation.
logfile < < " calculating vd for k = " < < k < < " node " < < node < < " \t " ;
uint64_t N = vd . size ( ) - 1 ;
auto const & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
if ( unifVectors [ kind ] [ k ] [ node ] ! = - 1 ) {
//logfile << "already calculated for k = " << k << " node = " << node << "\n";
return ;
}
std : : string print = std : : string ( " calculating vector " ) + std : : to_string ( kind ) + " for k = " + std : : to_string ( k ) + " node " + std : : to_string ( node ) + " \t " ;
auto numberOfStates = fullTransitionMatrix . getRowGroupCount ( ) ;
auto numberOfProbStates = numberOfStates - markovianStates . getNumberOfSetBits ( ) ;
uint64_t N = unifVectors [ kind ] . size ( ) - 1 ;
auto const & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
ValueType res ;
// First Case, k==N, independent from kind of state
if ( k = = N ) {
logfile < < " k == N! res = 0 \n " ;
vd [ k ] [ node ] = 0 ;
//logfile << print << "k == N! res = 0\n";
unifVectors [ kind ] [ k ] [ node ] = 0 ;
return ;
}
//goal state
if ( psiStates [ node ] ) {
res = storm : : utility : : zero < ValueType > ( ) ;
for ( uint64_t i = k ; i < N ; i + + ) {
ValueType between = poisson ( lambda , i ) ;
res + = between ;
if ( kind = = 0 ) {
// Vd
res = storm : : utility : : zero < ValueType > ( ) ;
for ( uint64_t i = k ; i < N ; i + + ) {
if ( i > = poisson . left & & i < = poisson . right ) {
ValueType between = poisson . weights [ i - poisson . left ] ;
res + = between ;
}
}
unifVectors [ kind ] [ k ] [ node ] = res ;
} else {
// WU
unifVectors [ kind ] [ k ] [ node ] = 1 ;
}
vd [ k ] [ node ] = res ;
logfile < < " goal state node " < < node < < " res = " < < res < < " \n " ;
//logfile << print << "goal state node " << node << " res = " << res << "\n";
return ;
}
// no-goal markovian state
//markovian non-goal S tate
if ( markovianStates [ node ] ) {
logfile < < " markovian state: " ;
res = 0 ;
auto line = fullTransitionMatrix . getRow ( rowGroupIndices [ node ] ) ;
for ( auto & element : line ) {
uint64_t to = element . getColumn ( ) ;
if ( vd [ k + 1 ] [ to ] = = - 1 ) {
calculateVd ( dir , k + 1 , to , lambda , vd , fullTransitionMatrix , markovianStates , psiStates ) ;
if ( unifVectors [ kind ] [ k + 1 ] [ to ] = = - 1 ) {
calculateUnifPlusVector ( env , k + 1 , to , kind , lambda , probSize , relati veReachability , dir , unifVectors , fullTransitionMatrix , markovianStates , psiStates , solver , logfile , poisson ) ;
}
res + = element . getValue ( ) * vd [ k + 1 ] [ to ] ;
res + = element . getValue ( ) * unifVectors [ kind ] [ k + 1 ] [ to ] ;
}
} else { //no-goal prob state
logfile < < " prob state: " ;
res = - 1 ;
uint64_t rowStart = rowGroupIndices [ node ] ;
uint64_t rowEnd = rowGroupIndices [ node + 1 ] ;
for ( uint64_t i = rowStart ; i < rowEnd ; i + + ) {
auto line = fullTransitionMatrix . getRow ( i ) ;
ValueType between = 0 ;
for ( auto & element : line ) {
uint64_t to = element . getColumn ( ) ;
if ( to = = node ) {
logfile < < " ignoring self loops for now " ;
continue ;
}
if ( vd [ k ] [ to ] = = - 1 ) {
calculateVd ( dir , k , to , lambda , vd , fullTransitionMatrix , markovianStates , psiStates ) ;
}
between + = element . getValue ( ) * vd [ k ] [ to ] ;
unifVectors [ kind ] [ k ] [ node ] = res ;
//logfile << print << "markovian state: " << " res = " << res << "\n";
return ;
}
//probabilistic non-goal State
if ( ! markovianStates [ node ] ) {
std : : vector < ValueType > b ( probSize , 0 ) , x ( numberOfProbStates , 0 ) ;
//calculate b
uint64_t lineCounter = 0 ;
for ( int i = 0 ; i < numberOfStates ; i + + ) {
if ( markovianStates [ i ] ) {
continue ;
}
if ( maximize ( dir ) ) {
res = std : : max ( res , between ) ;
} else {
if ( res ! = - 1 ) {
res = std : : min ( res , between ) ;
} else {
res = between ;
auto rowStart = rowGroupIndices [ i ] ;
auto rowEnd = rowGroupIndices [ i + 1 ] ;
for ( auto j = rowStart ; j < rowEnd ; j + + ) {
uint64_t stateCount = 0 ;
res = 0 ;
for ( auto & element : fullTransitionMatrix . getRow ( j ) ) {
auto to = element . getColumn ( ) ;
if ( ! markovianStates [ to ] ) {
continue ;
}
if ( unifVectors [ kind ] [ k ] [ to ] = = - 1 ) {
calculateUnifPlusVector ( env , k , to , kind , lambda , probSize , relativeReachability , dir ,
unifVectors , fullTransitionMatrix , markovianStates ,
psiStates , solver , logfile , poisson ) ;
}
res = res + relativeReachability [ j ] [ stateCount ] * unifVectors [ kind ] [ k ] [ to ] ;
stateCount + + ;
}
b [ lineCounter ] = res ;
lineCounter + + ;
}
}
}
vd [ k ] [ node ] = res ;
logfile < < " res = " < < res < < " \n " ;
solver - > solveEquations ( env , dir , x , b ) ;
for ( uint64_t i = 0 ; i < numberOfProbStates ; i + + ) {
auto trueI = transformIndice ( ~ markovianStates , i ) ;
unifVectors [ kind ] [ k ] [ trueI ] = x [ i ] ;
}
//logfile << print << "probabilistic state: "<< " res = " << unifVectors[kind][k][node] << " but calculated more \n";
} //end probabilistic states
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type = 0 >
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
uint64_t SparseMarkovAutomatonCslHelper : : trajans ( storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , uint64_t node , std : : vector < uint64_t > & disc , std : : vector < uint64_t > & finish , uint64_t * counter ) {
auto const & rowGroupIndice = transitionMatrix . getRowGroupIndices ( ) ;
@ -409,7 +384,46 @@ namespace storm {
return finish [ node ] ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type = 0 >
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : identify (
storm : : storage : : SparseMatrix < ValueType > const & fullTransitionMatrix ,
storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
auto indices = fullTransitionMatrix . getRowGroupIndices ( ) ;
bool realProb = false ;
bool NDM = false ;
bool Alternating = true ;
bool probStates = false ;
bool markStates = false ;
for ( uint64_t i = 0 ; i < fullTransitionMatrix . getRowGroupCount ( ) ; i + + ) {
auto from = indices [ i ] ;
auto to = indices [ i + 1 ] ;
if ( from + 1 ! = to ) {
NDM = true ;
}
if ( ! psiStates [ i ] ) {
if ( markovianStates [ i ] ) {
markStates = true ;
} else {
probStates = true ;
}
}
for ( uint64_t j = from ; j < to ; j + + ) {
for ( auto & element : fullTransitionMatrix . getRow ( j ) ) {
if ( markovianStates [ i ] = = markovianStates [ element . getColumn ( ) ] & & ! psiStates [ element . getColumn ( ) ] ) {
Alternating = false ;
}
if ( ! markovianStates [ i ] & & element . getValue ( ) ! = 1 ) {
realProb = true ;
}
}
}
}
std : : cout < < " prob States : " < < probStates < < " markovian States: " < < markStates < < " realProb: " < < realProb < < " NDM: " < < NDM < < " Alternating: " < < Alternating < < " \n " ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
storm : : storage : : BitVector SparseMarkovAutomatonCslHelper : : identifyProbCyclesGoalStates ( storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : BitVector const & cycleStates ) {
storm : : storage : : BitVector goalStates ( cycleStates . size ( ) , false ) ;
@ -433,7 +447,7 @@ namespace storm {
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type = 0 >
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
storm : : storage : : BitVector SparseMarkovAutomatonCslHelper : : identifyProbCycles ( storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
storm : : storage : : BitVector const & probabilisticStates = ~ markovianStates ;
@ -467,7 +481,7 @@ namespace storm {
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type = 0 >
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
void SparseMarkovAutomatonCslHelper : : deleteProbDiagonals ( storm : : storage : : SparseMatrix < ValueType > & transitionMatrix , storm : : storage : : BitVector const & markovianStates ) {
auto const & rowGroupIndices = transitionMatrix . getRowGroupIndices ( ) ;
@ -489,68 +503,127 @@ namespace storm {
continue ;
}
for ( auto & element : transitionMatrix . getRow ( j ) ) {
if ( element . getColumn ( ) ! = i & & selfLoop ! = 1 ) {
element . setValue ( element . getValue ( ) / ( 1 - selfLoop ) ) ;
if ( element . getColumn ( ) ! = i ) {
if ( selfLoop ! = 1 ) {
element . setValue ( element . getValue ( ) / ( 1 - selfLoop ) ) ;
}
} else {
element . setValue ( 0 ) ;
}
}
}
}
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : unifPlus ( OptimizationDirection dir , std : : pair < double , double > const & boundsPair , std : : vector < ValueType > const & exitRateVector , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates ) {
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : unifPlus ( Environment const & env , OptimizationDirection dir ,
std : : pair < double , double > const & boundsPair ,
std : : vector < ValueType > const & exitRateVector ,
storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix ,
storm : : storage : : BitVector const & markovStates ,
storm : : storage : : BitVector const & psiStates ,
storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
STORM_LOG_TRACE ( " Using UnifPlus to compute bounded until probabilities. " ) ;
std : : ofstream logfile ( " U+logfile.txt " , std : : ios : : app ) ;
ValueType maxNorm = 0 ;
//logfile << "Using U+\n";
ValueType maxNorm = storm : : utility : : zero < ValueType > ( ) ;
ValueType oldDiff = - storm : : utility : : zero < ValueType > ( ) ;
//bitvectors to identify different kind of states
storm : : storage : : BitVector markovianStates = markovStates ;
storm : : storage : : BitVector allStates ( markovianStates . size ( ) , true ) ;
storm : : storage : : BitVector probabilisticStates = ~ markovianStates ;
//vectors to save calculation
std : : vector < std : : vector < ValueType > > vd , vu , wu ;
std : : vector < std : : vector < std : : vector < ValueType > > > unifVectors { } ;
//transitions from goalStates will be ignored. still: they are not allowed to be probabilistic!
for ( uint64_t i = 0 ; i < psiStates . size ( ) ; i + + ) {
if ( psiStates [ i ] ) {
markovianStates . set ( i , true ) ;
probabilisticStates . set ( i , false ) ;
}
}
//transition matrix with diagonal entries. The values can be changed during uniformisation
std : : vector < ValueType > exitRate { exitRateVector } ;
typename storm : : storage : : SparseMatrix < ValueType > fullTransitionMatrix = transitionMatrix . getSubmatrix ( true , allStates , allStates , true ) ;
auto rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
//delete prob-diagonal entries
//deleteProbDiagonalEntries(fullTransitionMatrix, markovianStates);
deleteProbDiagonals ( fullTransitionMatrix , markovianStates ) ;
//identify cycles and cycleGoals
auto cycleStates = identifyProbCycles ( fullTransitionMatrix , markovianStates , psiStates ) ;
auto cycleGoals = identifyProbCyclesGoalStates ( fullTransitionMatrix , cycleStates ) ;
typename storm : : storage : : SparseMatrix < ValueType > fullTransitionMatrix = transitionMatrix . getSubmatrix (
true , allStates , allStates , true ) ;
// delete diagonals
//deleteProbDiagonals(fullTransitionMatrix, markovianStates); //for now leaving this out
typename storm : : storage : : SparseMatrix < ValueType > probMatrix { } ;
uint64_t probSize = 0 ;
if ( probabilisticStates . getNumberOfSetBits ( ) ! = 0 ) { //work around in case there are no prob states
probMatrix = fullTransitionMatrix . getSubmatrix ( true , probabilisticStates , probabilisticStates ,
true ) ;
probSize = probMatrix . getRowCount ( ) ;
}
printTransitions ( exitRateVector , fullTransitionMatrix , markovianStates , psiStates , cycleStates , cycleGoals , vd , vu , wu ) ; // TODO: delete when develepmont is finished
auto & rowGroupIndices = fullTransitionMatrix . getRowGroupIndices ( ) ;
//(1) define horizon, epsilon, kappa , N, lambda,
uint64_t numberOfStates = fullTransitionMatrix . getRowGroupCount ( ) ;
double T = boundsPair . second ;
ValueType kappa = storm : : utility : : one < ValueType > ( ) / 10 ; // would be better as option-parameter
ValueType kappa = storm : : utility : : one < ValueType > ( ) / 10 ; // would be better as option-parameter
ValueType epsilon = storm : : settings : : getModule < storm : : settings : : modules : : GeneralSettings > ( ) . getPrecision ( ) ;
ValueType lambda = exitRateVector [ 0 ] ;
for ( ValueType act : exitRateVector ) {
ValueType lambda = exitRate [ 0 ] ;
for ( ValueType act : exitRate ) {
lambda = std : : max ( act , lambda ) ;
}
uint64_t N ;
//calculate relative ReachabilityVectors
std : : vector < ValueType > in { } ;
std : : vector < std : : vector < ValueType > > relReachability ( transitionMatrix . getRowCount ( ) , in ) ;
//calculate relative reachability
for ( uint64_t i = 0 ; i < numberOfStates ; i + + ) {
if ( markovianStates [ i ] ) {
continue ;
}
auto from = rowGroupIndices [ i ] ;
auto to = rowGroupIndices [ i + 1 ] ;
for ( auto j = from ; j < to ; j + + ) {
for ( auto & element : fullTransitionMatrix . getRow ( j ) ) {
if ( markovianStates [ element . getColumn ( ) ] ) {
relReachability [ j ] . push_back ( element . getValue ( ) ) ;
}
}
}
}
//create equitation solver
storm : : solver : : MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory . getRequirements ( env , true , dir ) ;
requirements . clearBounds ( ) ;
STORM_LOG_THROW ( requirements . empty ( ) , storm : : exceptions : : UncheckedRequirementException ,
" Cannot establish requirements for solver. " ) ;
std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > solver ;
if ( probSize ! = 0 ) {
solver = minMaxLinearEquationSolverFactory . create ( env , probMatrix ) ;
solver - > setHasUniqueSolution ( ) ;
solver - > setBounds ( storm : : utility : : zero < ValueType > ( ) , storm : : utility : : one < ValueType > ( ) ) ;
solver - > setRequirementsChecked ( ) ;
solver - > setCachingEnabled ( true ) ;
}
// while not close enough to precision:
do {
//logfile << "starting iteration\n";
maxNorm = storm : : utility : : zero < ValueType > ( ) ;
// (2) update parameter
N = ceil ( lambda * T * exp ( 2 ) - log ( kappa * epsilon ) ) ;
N = ceil ( lambda * T * exp ( 2 ) - log ( kappa * epsilon ) ) ;
// (3) uniform - just applied to markovian states
for ( uint_fast64_t i = 0 ; i < fullTransitionMatrix . getRowGroupCount ( ) ; i + + ) {
if ( ! markovianStates [ i ] ) {
for ( uint64_t i = 0 ; i < fullTransitionMatrix . getRowGroupCount ( ) ; i + + ) {
if ( ! markovianStates [ i ] | | psiStates [ i ] ) {
continue ;
}
uint64_t from = rowGroupIndices [ i ] ; //markovian state -> no Nondeterminism -> only one row
@ -564,7 +637,7 @@ namespace storm {
ValueType exitNew = lambda ;
for ( auto & v : line ) {
if ( v . getColumn ( ) = = i ) { //diagonal element
ValueType newSelfLoop = exitNew - exitOld + v . getValue ( ) ;
ValueType newSelfLoop = exitNew - exitOld + v . getValue ( ) * exitOld ;
ValueType newRate = newSelfLoop / exitNew ;
v . setValue ( newRate ) ;
} else { //modify probability
@ -576,35 +649,71 @@ namespace storm {
exitRate [ i ] = exitNew ;
}
// calculate poisson distribution
storm : : utility : : numerical : : FoxGlynnResult < ValueType > foxGlynnResult = storm : : utility : : numerical : : foxGlynn ( lambda * T , epsilon * kappa / 100 ) ;
// Scale the weights so they add up to one.
for ( auto & element : foxGlynnResult . weights ) {
element / = foxGlynnResult . totalWeight ;
}
// (4) define vectors/matrices
std : : vector < ValueType > init ( numberOfStates , - 1 ) ;
vd = std : : vector < std : : vector < ValueType > > ( N + 1 , init ) ;
vu = std : : vector < std : : vector < ValueType > > ( N + 1 , init ) ;
wu = std : : vector < std : : vector < ValueType > > ( N + 1 , init ) ;
std : : vector < std : : vector < ValueType > > v = std : : vector < std : : vector < ValueType > > ( N + 1 , init ) ;
unifVectors . clear ( ) ;
unifVectors . push_back ( v ) ;
unifVectors . push_back ( v ) ;
unifVectors . push_back ( v ) ;
//define 0=vd 1=vu 2=wu
// (5) calculate vectors and maxNorm
for ( uint64_t i = 0 ; i < numberOfStates ; i + + ) {
for ( uint64_t k = N ; k < = N ; k - - ) {
calculateVd ( dir , k , i , T * lambda , vd , fullTransitionMatrix , markovianStates , psiStates ) ;
calculateWu ( dir , k , i , T * lambda , wu , fullTransitionMatrix , markovianStates , psiStates ) ;
calculateVu ( dir , k , i , T * lambda , vu , wu , fullTransitionMatrix , markovianStates , psiStates ) ;
//also use iteration to keep maxNorm of vd and vu up to date, so the loop-condition is easy to prove
ValueType diff = std : : abs ( vd [ k ] [ i ] - vu [ k ] [ i ] ) ;
maxNorm = std : : max ( maxNorm , diff ) ;
}
calculateUnifPlusVector ( env , k , i , 0 , lambda , probSize , relReachability , dir , unifVectors ,
fullTransitionMatrix , markovianStates , psiStates , solver , logfile ,
foxGlynnResult ) ;
calculateUnifPlusVector ( env , k , i , 2 , lambda , probSize , relReachability , dir , unifVectors ,
fullTransitionMatrix , markovianStates , psiStates , solver , logfile ,
foxGlynnResult ) ;
calculateVu ( env , relReachability , dir , k , i , 1 , lambda , probSize , unifVectors ,
fullTransitionMatrix , markovianStates , psiStates , solver , logfile ,
foxGlynnResult ) ;
//also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
//ValueType diff = std::abs(unifVectors[0][k][i] - unifVectors[1][k][i]);
}
}
//only iterate over result vector, as the results can only get more precise
for ( uint64_t i = 0 ; i < numberOfStates ; i + + ) {
ValueType diff = std : : abs ( unifVectors [ 0 ] [ 0 ] [ i ] - unifVectors [ 1 ] [ 0 ] [ i ] ) ;
maxNorm = std : : max ( maxNorm , diff ) ;
}
//printTransitions(N, maxNorm, fullTransitionMatrix, exitRate, markovianStates, psiStates,
// relReachability, psiStates, psiStates, unifVectors, logfile); //TODO remove
// (6) double lambda
lambda = 2 * lambda ;
// (6) double lambda
lambda = 2 * lambda ;
// (7) escape if not coming closer to solution
if ( oldDiff ! = - 1 ) {
if ( oldDiff = = maxNorm ) {
std : : cout < < " Not coming closer to solution as " < < maxNorm < < " \n " ;
break ;
}
}
oldDiff = maxNorm ;
//std::cout << "Finished Iteration for N = " << N << " with difference " << maxNorm << "\n";
} while ( maxNorm > epsilon * ( 1 - kappa ) ) ;
} while ( maxNorm > epsilon * ( 1 - kappa ) ) ;
return vd [ 0 ] ;
logfile . close ( ) ;
return unifVectors [ 0 ] [ 0 ] ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : computeBoundedUntilProbabilitiesImca ( OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : pair < double , double > const & boundsPair , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : computeBoundedUntilProbabilitiesImca ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : pair < double , double > const & boundsPair , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
STORM_LOG_TRACE ( " Using IMCA's technique to compute bounded until probabilities. " ) ;
uint64_t numberOfStates = transitionMatrix . getRowGroupCount ( ) ;
@ -669,16 +778,15 @@ namespace storm {
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : computeBoundedUntilProbabilities ( OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : pair < double , double > const & boundsPair , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
std : : vector < ValueType > SparseMarkovAutomatonCslHelper : : computeBoundedUntilProbabilities ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , std : : vector < ValueType > const & exitRateVector , storm : : storage : : BitVector const & markovianStates , storm : : storage : : BitVector const & psiStates , std : : pair < double , double > const & boundsPair , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
auto const & markovAutomatonSettings = storm : : settings : : getModule < storm : : settings : : modules : : MarkovAutomatonSettings > ( ) ;
if ( markovAutomatonSettings . getTechnique ( ) = = storm : : settings : : modules : : MarkovAutomatonSettings : : BoundedReachabilityTechnique : : Imca ) {
return computeBoundedUntilProbabilitiesImca ( dir , transitionMatrix , exitRateVector , markovianStates , psiStates , boundsPair , minMaxLinearEquationSolverFactory ) ;
return computeBoundedUntilProbabilitiesImca ( env , dir , transitionMatrix , exitRateVector , markovianStates , psiStates , boundsPair , minMaxLinearEquationSolverFactory ) ;
} else {
STORM_LOG_ASSERT ( markovAutomatonSettings . getTechnique ( ) = = storm : : settings : : modules : : MarkovAutomatonSettings : : BoundedReachabilityTechnique : : UnifPlus , " Unknown solution technique. " ) ;
// Why is optimization direction not passed?
return unifPlus ( dir , boundsPair , exitRateVector , transitionMatrix , markovianStates , psiStates ) ;
return unifPlus ( env , dir , boundsPair , exitRateVector , transitionMatrix , markovianStates , psiStates , minMaxLinearEquationSolverFactory ) ;
}
}