Browse Source
Adapted Markov automaton model checker to new formula classes.
Adapted Markov automaton model checker to new formula classes.
Former-commit-id: c351b10ef2
tempestpy_adaptions
dehnert
10 years ago
7 changed files with 636 additions and 628 deletions
-
6src/logic/BoundedUntilFormula.cpp
-
559src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp
-
681src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h
-
2src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp
-
4src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h
-
2src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
-
10src/modelchecker/prctl/SparseMdpPrctlModelChecker.h
@ -1,9 +1,13 @@ |
|||
#include "src/logic/BoundedUntilFormula.h"
|
|||
|
|||
#include "src/utility/macros.h"
|
|||
#include "src/exceptions/InvalidArgumentException.h"
|
|||
|
|||
namespace storm { |
|||
namespace logic { |
|||
BoundedUntilFormula::BoundedUntilFormula(std::shared_ptr<Formula const> const& leftSubformula, std::shared_ptr<Formula const> const& rightSubformula, double lowerBound, double upperBound) : BinaryPathFormula(leftSubformula, rightSubformula), bounds(std::make_pair(lowerBound, upperBound)) { |
|||
// Intentionally left empty.
|
|||
STORM_LOG_THROW(lowerBound >= 0 && upperBound >= 0, storm::exceptions::InvalidArgumentException, "Bounded until formula requires non-negative time bounds."); |
|||
STORM_LOG_THROW(lowerBound <= upperBound, storm::exceptions::InvalidArgumentException, "Lower bound of bounded until formula is required to be smaller than the upper bound."); |
|||
} |
|||
|
|||
BoundedUntilFormula::BoundedUntilFormula(std::shared_ptr<Formula const> const& leftSubformula, std::shared_ptr<Formula const> const& rightSubformula, uint_fast64_t upperBound) : BinaryPathFormula(leftSubformula, rightSubformula), bounds(upperBound) { |
@ -0,0 +1,559 @@ |
|||
#include "src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h"
|
|||
|
|||
#include <utility>
|
|||
#include <vector>
|
|||
|
|||
#include "src/utility/ConstantsComparator.h"
|
|||
#include "src/utility/macros.h"
|
|||
#include "src/utility/vector.h"
|
|||
#include "src/utility/graph.h"
|
|||
|
|||
#include "src/modelchecker/ExplicitQualitativeCheckResult.h"
|
|||
#include "src/modelchecker/ExplicitQuantitativeCheckResult.h"
|
|||
|
|||
#include "src/solver/LpSolver.h"
|
|||
|
|||
#include "src/exceptions/NotImplementedException.h"
|
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
template<typename ValueType> |
|||
SparseMarkovAutomatonCslModelChecker<ValueType>::SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver) : model(model), nondeterministicLinearEquationSolver(nondeterministicLinearEquationSolver) { |
|||
// Intentionally left empty.
|
|||
} |
|||
|
|||
template<typename ValueType> |
|||
SparseMarkovAutomatonCslModelChecker<ValueType>::SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model) : model(model), nondeterministicLinearEquationSolver(storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>()) { |
|||
// Intentionally left empty.
|
|||
} |
|||
|
|||
template<typename ValueType> |
|||
bool SparseMarkovAutomatonCslModelChecker<ValueType>::canHandle(storm::logic::Formula const& formula) const { |
|||
return formula.isCslStateFormula() || formula.isCslPathFormula() || (formula.isRewardPathFormula() && formula.isReachabilityRewardFormula()); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
void SparseMarkovAutomatonCslModelChecker<ValueType>::computeBoundedReachabilityProbabilities(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps) { |
|||
// Start by computing four sparse matrices:
|
|||
// * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states.
|
|||
// * a matrix aMarkovianToProbabilistic with all (discretized) transitions from Markovian non-goal states to all probabilistic non-goal states.
|
|||
// * a matrix aProbabilistic with all (non-discretized) transitions from probabilistic non-goal states to other probabilistic non-goal states.
|
|||
// * a matrix aProbabilisticToMarkovian with all (non-discretized) transitions from probabilistic non-goal states to all Markovian non-goal states.
|
|||
typename storm::storage::SparseMatrix<ValueType> aMarkovian = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, markovianNonGoalStates, true); |
|||
typename storm::storage::SparseMatrix<ValueType> aMarkovianToProbabilistic = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, probabilisticNonGoalStates); |
|||
typename storm::storage::SparseMatrix<ValueType> aProbabilistic = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, probabilisticNonGoalStates); |
|||
typename storm::storage::SparseMatrix<ValueType> aProbabilisticToMarkovian = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, markovianNonGoalStates); |
|||
|
|||
// The matrices with transitions from Markovian states need to be digitized.
|
|||
// Digitize aMarkovian. Based on whether the transition is a self-loop or not, we apply the two digitization rules.
|
|||
uint_fast64_t rowIndex = 0; |
|||
for (auto state : markovianNonGoalStates) { |
|||
for (auto& element : aMarkovian.getRow(rowIndex)) { |
|||
ValueType eTerm = std::exp(-exitRates[state] * delta); |
|||
if (element.getColumn() == rowIndex) { |
|||
element.setValue((storm::utility::one<ValueType>() - eTerm) * element.getValue() + eTerm); |
|||
} else { |
|||
element.setValue((storm::utility::one<ValueType>() - eTerm) * element.getValue()); |
|||
} |
|||
} |
|||
++rowIndex; |
|||
} |
|||
|
|||
// Digitize aMarkovianToProbabilistic. As there are no self-loops in this case, we only need to apply the digitization formula for regular successors.
|
|||
rowIndex = 0; |
|||
for (auto state : markovianNonGoalStates) { |
|||
for (auto& element : aMarkovianToProbabilistic.getRow(rowIndex)) { |
|||
element.setValue((1 - std::exp(-exitRates[state] * delta)) * element.getValue()); |
|||
} |
|||
++rowIndex; |
|||
} |
|||
|
|||
// Initialize the two vectors that hold the variable one-step probabilities to all target states for probabilistic and Markovian (non-goal) states.
|
|||
std::vector<ValueType> bProbabilistic(aProbabilistic.getRowCount()); |
|||
std::vector<ValueType> bMarkovian(markovianNonGoalStates.getNumberOfSetBits()); |
|||
|
|||
// Compute the two fixed right-hand side vectors, one for Markovian states and one for the probabilistic ones.
|
|||
std::vector<ValueType> bProbabilisticFixed = transitionMatrix.getConstrainedRowSumVector(probabilisticNonGoalStates, goalStates); |
|||
std::vector<ValueType> bMarkovianFixed; |
|||
bMarkovianFixed.reserve(markovianNonGoalStates.getNumberOfSetBits()); |
|||
for (auto state : markovianNonGoalStates) { |
|||
bMarkovianFixed.push_back(storm::utility::zero<ValueType>()); |
|||
|
|||
for (auto& element : transitionMatrix.getRowGroup(state)) { |
|||
if (goalStates.get(element.getColumn())) { |
|||
bMarkovianFixed.back() += (1 - std::exp(-exitRates[state] * delta)) * element.getValue(); |
|||
} |
|||
} |
|||
} |
|||
|
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministiclinearEquationSolver = storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>(); |
|||
|
|||
// Perform the actual value iteration
|
|||
// * loop until the step bound has been reached
|
|||
// * in the loop:
|
|||
// * perform value iteration using A_PSwG, v_PS and the vector b where b = (A * 1_G)|PS + A_PStoMS * v_MS
|
|||
// and 1_G being the characteristic vector for all goal states.
|
|||
// * perform one timed-step using v_MS := A_MSwG * v_MS + A_MStoPS * v_PS + (A * 1_G)|MS
|
|||
std::vector<ValueType> markovianNonGoalValuesSwap(markovianNonGoalValues); |
|||
std::vector<ValueType> multiplicationResultScratchMemory(aProbabilistic.getRowCount()); |
|||
std::vector<ValueType> aProbabilisticScratchMemory(probabilisticNonGoalValues.size()); |
|||
for (uint_fast64_t currentStep = 0; currentStep < numberOfSteps; ++currentStep) { |
|||
// Start by (re-)computing bProbabilistic = bProbabilisticFixed + aProbabilisticToMarkovian * vMarkovian.
|
|||
aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); |
|||
storm::utility::vector::addVectorsInPlace(bProbabilistic, bProbabilisticFixed); |
|||
|
|||
// Now perform the inner value iteration for probabilistic states.
|
|||
nondeterministiclinearEquationSolver->solveEquationSystem(min, aProbabilistic, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); |
|||
|
|||
// (Re-)compute bMarkovian = bMarkovianFixed + aMarkovianToProbabilistic * vProbabilistic.
|
|||
aMarkovianToProbabilistic.multiplyWithVector(probabilisticNonGoalValues, bMarkovian); |
|||
storm::utility::vector::addVectorsInPlace(bMarkovian, bMarkovianFixed); |
|||
aMarkovian.multiplyWithVector(markovianNonGoalValues, markovianNonGoalValuesSwap); |
|||
std::swap(markovianNonGoalValues, markovianNonGoalValuesSwap); |
|||
storm::utility::vector::addVectorsInPlace(markovianNonGoalValues, bMarkovian); |
|||
} |
|||
|
|||
// After the loop, perform one more step of the value iteration for PS states.
|
|||
aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); |
|||
storm::utility::vector::addVectorsInPlace(bProbabilistic, bProbabilisticFixed); |
|||
nondeterministiclinearEquationSolver->solveEquationSystem(min, aProbabilistic, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair) const { |
|||
// 'Unpack' the bounds to make them more easily accessible.
|
|||
double lowerBound = boundsPair.first; |
|||
double upperBound = boundsPair.second; |
|||
|
|||
// Get some data fields for convenient access.
|
|||
typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = model.getTransitionMatrix(); |
|||
std::vector<ValueType> const& exitRates = model.getExitRates(); |
|||
storm::storage::BitVector const& markovianStates = model.getMarkovianStates(); |
|||
|
|||
// (1) Compute the accuracy we need to achieve the required error bound.
|
|||
ValueType maxExitRate = model.getMaximalExitRate(); |
|||
ValueType delta = (2 * storm::settings::generalSettings().getPrecision()) / (upperBound * maxExitRate * maxExitRate); |
|||
|
|||
// (2) Compute the number of steps we need to make for the interval.
|
|||
uint_fast64_t numberOfSteps = static_cast<uint_fast64_t>(std::ceil((upperBound - lowerBound) / delta)); |
|||
STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [" << lowerBound << ", " << upperBound << "]." << std::endl); |
|||
|
|||
// (3) Compute the non-goal states and initialize two vectors
|
|||
// * vProbabilistic holds the probability values of probabilistic non-goal states.
|
|||
// * vMarkovian holds the probability values of Markovian non-goal states.
|
|||
storm::storage::BitVector const& markovianNonGoalStates = markovianStates & ~psiStates; |
|||
storm::storage::BitVector const& probabilisticNonGoalStates = ~markovianStates & ~psiStates; |
|||
std::vector<ValueType> vProbabilistic(probabilisticNonGoalStates.getNumberOfSetBits()); |
|||
std::vector<ValueType> vMarkovian(markovianNonGoalStates.getNumberOfSetBits()); |
|||
|
|||
computeBoundedReachabilityProbabilities(minimize, transitionMatrix, exitRates, markovianStates, psiStates, markovianNonGoalStates, probabilisticNonGoalStates, vMarkovian, vProbabilistic, delta, numberOfSteps); |
|||
|
|||
// (4) If the lower bound of interval was non-zero, we need to take the current values as the starting values for a subsequent value iteration.
|
|||
if (lowerBound != storm::utility::zero<ValueType>()) { |
|||
std::vector<ValueType> vAllProbabilistic((~markovianStates).getNumberOfSetBits()); |
|||
std::vector<ValueType> vAllMarkovian(markovianStates.getNumberOfSetBits()); |
|||
|
|||
// Create the starting value vectors for the next value iteration based on the results of the previous one.
|
|||
storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, psiStates % ~markovianStates, storm::utility::one<ValueType>()); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, ~psiStates % ~markovianStates, vProbabilistic); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, psiStates % markovianStates, storm::utility::one<ValueType>()); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, ~psiStates % markovianStates, vMarkovian); |
|||
|
|||
// Compute the number of steps to reach the target interval.
|
|||
numberOfSteps = static_cast<uint_fast64_t>(std::ceil(lowerBound / delta)); |
|||
STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [0, " << lowerBound << "]." << std::endl); |
|||
|
|||
// Compute the bounded reachability for interval [0, b-a].
|
|||
computeBoundedReachabilityProbabilities(minimize, transitionMatrix, exitRates, markovianStates, storm::storage::BitVector(model.getNumberOfStates()), markovianStates, ~markovianStates, vAllMarkovian, vAllProbabilistic, delta, numberOfSteps); |
|||
|
|||
// Create the result vector out of vAllProbabilistic and vAllMarkovian and return it.
|
|||
std::vector<ValueType> result(model.getNumberOfStates()); |
|||
storm::utility::vector::setVectorValues(result, ~markovianStates, vAllProbabilistic); |
|||
storm::utility::vector::setVectorValues(result, markovianStates, vAllMarkovian); |
|||
|
|||
return result; |
|||
} else { |
|||
// Create the result vector out of 1_G, vProbabilistic and vMarkovian and return it.
|
|||
std::vector<ValueType> result(model.getNumberOfStates()); |
|||
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>()); |
|||
storm::utility::vector::setVectorValues(result, probabilisticNonGoalStates, vProbabilistic); |
|||
storm::utility::vector::setVectorValues(result, markovianNonGoalStates, vMarkovian); |
|||
return result; |
|||
} |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { |
|||
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); |
|||
STORM_LOG_THROW(pathFormula.getLeftSubformula().isTrueFormula(), storm::exceptions::NotImplementedException, "Only bounded properties of the form 'true U[t1, t2] phi' are currently supported."); |
|||
STORM_LOG_THROW(model.isClosed(), storm::exceptions::InvalidArgumentException, "Unable to compute time-bounded reachability probilities in non-closed Markov automaton."); |
|||
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); |
|||
ExplicitQualitativeCheckResult& rightResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*rightResultPointer); |
|||
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, rightResult.getTruthValues(), pathFormula.getIntervalBounds()))); |
|||
return result; |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::computeUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative) const { |
|||
return storm::modelchecker::SparseMdpPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(minimize, model.getTransitionMatrix(), model.getBackwardTransitions(), phiStates, psiStates, nondeterministicLinearEquationSolver, qualitative); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { |
|||
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); |
|||
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); |
|||
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); |
|||
ExplicitQualitativeCheckResult& leftResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*leftResultPointer); |
|||
ExplicitQualitativeCheckResult& rightResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*rightResultPointer); |
|||
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, leftResult.getTruthValues(), rightResult.getTruthValues(), qualitative))); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::storage::BitVector const& targetStates, bool qualitative) const { |
|||
|
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { |
|||
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); |
|||
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); |
|||
ExplicitQualitativeCheckResult& subResult = dynamic_cast<ExplicitQualitativeCheckResult&>(*subResultPointer); |
|||
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValues(), qualitative))); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<ValueType>::checkBooleanLiteralFormula(storm::logic::BooleanLiteralFormula const& stateFormula) { |
|||
if (stateFormula.isTrueFormula()) { |
|||
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates(), true))); |
|||
} else { |
|||
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(storm::storage::BitVector(model.getNumberOfStates()))); |
|||
} |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<ValueType>::checkAtomicLabelFormula(storm::logic::AtomicLabelFormula const& stateFormula) { |
|||
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(model.getLabeledStates(stateFormula.getLabel()))); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::checkLongRunAverage(bool min, storm::storage::BitVector const& goalStates) const { |
|||
// Check whether the automaton is closed.
|
|||
if (!model.isClosed()) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Unable to compute long-run average on non-closed Markov automaton."; |
|||
} |
|||
|
|||
// If there are no goal states, we avoid the computation and directly return zero.
|
|||
if (goalStates.empty()) { |
|||
return std::vector<ValueType>(model.getNumberOfStates(), storm::utility::zero<ValueType>()); |
|||
} |
|||
|
|||
// Likewise, if all bits are set, we can avoid the computation and set.
|
|||
if ((~goalStates).empty()) { |
|||
return std::vector<ValueType>(model.getNumberOfStates(), storm::utility::one<ValueType>()); |
|||
} |
|||
|
|||
// Start by decomposing the Markov automaton into its MECs.
|
|||
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(model); |
|||
|
|||
// Get some data members for convenience.
|
|||
typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = model.getTransitionMatrix(); |
|||
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = model.getNondeterministicChoiceIndices(); |
|||
|
|||
// Now start with compute the long-run average for all end components in isolation.
|
|||
std::vector<ValueType> lraValuesForEndComponents; |
|||
|
|||
// While doing so, we already gather some information for the following steps.
|
|||
std::vector<uint_fast64_t> stateToMecIndexMap(model.getNumberOfStates()); |
|||
storm::storage::BitVector statesInMecs(model.getNumberOfStates()); |
|||
|
|||
for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { |
|||
storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; |
|||
|
|||
// Gather information for later use.
|
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
|
|||
statesInMecs.set(state); |
|||
stateToMecIndexMap[state] = currentMecIndex; |
|||
} |
|||
|
|||
// Compute the LRA value for the current MEC.
|
|||
lraValuesForEndComponents.push_back(this->computeLraForMaximalEndComponent(min, transitionMatrix, nondeterministicChoiceIndices, model.getMarkovianStates(), model.getExitRates(), goalStates, mec, currentMecIndex)); |
|||
} |
|||
|
|||
// For fast transition rewriting, we build some auxiliary data structures.
|
|||
storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; |
|||
uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); |
|||
uint_fast64_t lastStateNotInMecs = 0; |
|||
uint_fast64_t numberOfStatesNotInMecs = 0; |
|||
std::vector<uint_fast64_t> statesNotInMecsBeforeIndex; |
|||
statesNotInMecsBeforeIndex.reserve(model.getNumberOfStates()); |
|||
for (auto state : statesNotContainedInAnyMec) { |
|||
while (lastStateNotInMecs <= state) { |
|||
statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs); |
|||
++lastStateNotInMecs; |
|||
} |
|||
++numberOfStatesNotInMecs; |
|||
} |
|||
|
|||
// Finally, we are ready to create the SSP matrix and right-hand side of the SSP.
|
|||
std::vector<ValueType> b; |
|||
typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); |
|||
|
|||
// If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications).
|
|||
uint_fast64_t currentChoice = 0; |
|||
for (auto state : statesNotContainedInAnyMec) { |
|||
sspMatrixBuilder.newRowGroup(currentChoice); |
|||
|
|||
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { |
|||
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); |
|||
b.push_back(storm::utility::zero<ValueType>()); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
if (statesNotContainedInAnyMec.get(element.getColumn())) { |
|||
// If the target state is not contained in an MEC, we can copy over the entry.
|
|||
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); |
|||
} else { |
|||
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
|
|||
// so that we are able to write the cumulative probability to the MEC into the matrix.
|
|||
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); |
|||
} |
|||
} |
|||
|
|||
// Now insert all (cumulative) probability values that target an MEC.
|
|||
for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { |
|||
if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { |
|||
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Now we are ready to construct the choices for the auxiliary states.
|
|||
for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { |
|||
storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; |
|||
sspMatrixBuilder.newRowGroup(currentChoice); |
|||
|
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
boost::container::flat_set<uint_fast64_t> const& choicesInMec = stateChoicesPair.second; |
|||
|
|||
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { |
|||
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); |
|||
|
|||
// If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state.
|
|||
if (choicesInMec.find(choice) == choicesInMec.end()) { |
|||
b.push_back(storm::utility::zero<ValueType>()); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
if (statesNotContainedInAnyMec.get(element.getColumn())) { |
|||
// If the target state is not contained in an MEC, we can copy over the entry.
|
|||
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); |
|||
} else { |
|||
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
|
|||
// so that we are able to write the cumulative probability to the MEC into the matrix.
|
|||
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); |
|||
} |
|||
} |
|||
|
|||
// Now insert all (cumulative) probability values that target an MEC.
|
|||
for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { |
|||
if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { |
|||
// If the target MEC is the same as the current one, instead of adding a transition, we need to add the weighted reward
|
|||
// to the right-hand side vector of the SSP.
|
|||
if (mecIndex == targetMecIndex) { |
|||
b.back() += auxiliaryStateToProbabilityMap[mecIndex] * lraValuesForEndComponents[mecIndex]; |
|||
} else { |
|||
// Otherwise, we add a transition to the auxiliary state that is associated with the target MEC.
|
|||
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); |
|||
} |
|||
} |
|||
} |
|||
|
|||
++currentChoice; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC.
|
|||
++currentChoice; |
|||
b.push_back(lraValuesForEndComponents[mecIndex]); |
|||
} |
|||
|
|||
// Finalize the matrix and solve the corresponding system of equations.
|
|||
storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice); |
|||
|
|||
std::vector<ValueType> x(numberOfStatesNotInMecs + mecDecomposition.size()); |
|||
nondeterministicLinearEquationSolver->solveEquationSystem(min, sspMatrix, x, b); |
|||
|
|||
// Prepare result vector.
|
|||
std::vector<ValueType> result(model.getNumberOfStates()); |
|||
|
|||
// Set the values for states not contained in MECs.
|
|||
storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, x); |
|||
|
|||
// Set the values for all states in MECs.
|
|||
for (auto state : statesInMecs) { |
|||
result[state] = lraValuesForEndComponents[stateToMecIndexMap[state]]; |
|||
} |
|||
|
|||
return result; |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
ValueType SparseMarkovAutomatonCslModelChecker<ValueType>::computeLraForMaximalEndComponent(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec, uint_fast64_t mecIndex) { |
|||
std::shared_ptr<storm::solver::LpSolver> solver = storm::utility::solver::getLpSolver("LRA for MEC"); |
|||
solver->setModelSense(min ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize); |
|||
|
|||
// First, we need to create the variables for the problem.
|
|||
std::map<uint_fast64_t, storm::expressions::Variable> stateToVariableMap; |
|||
for (auto const& stateChoicesPair : mec) { |
|||
std::string variableName = "x" + std::to_string(stateChoicesPair.first); |
|||
stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); |
|||
} |
|||
storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", 1); |
|||
solver->update(); |
|||
|
|||
// Now we encode the problem as constraints.
|
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
|
|||
// Now, based on the type of the state, create a suitable constraint.
|
|||
if (markovianStates.get(state)) { |
|||
storm::expressions::Expression constraint = stateToVariableMap.at(state); |
|||
|
|||
for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) { |
|||
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); |
|||
} |
|||
|
|||
constraint = constraint + solver->getConstant(storm::utility::one<ValueType>() / exitRates[state]) * k; |
|||
storm::expressions::Expression rightHandSide = goalStates.get(state) ? solver->getConstant(storm::utility::one<ValueType>() / exitRates[state]) : solver->getConstant(0); |
|||
if (min) { |
|||
constraint = constraint <= rightHandSide; |
|||
} else { |
|||
constraint = constraint >= rightHandSide; |
|||
} |
|||
solver->addConstraint("state" + std::to_string(state), constraint); |
|||
} else { |
|||
// For probabilistic states, we want to add the constraint x_s <= sum P(s, a, s') * x_s' where a is the current action
|
|||
// and the sum ranges over all states s'.
|
|||
for (auto choice : stateChoicesPair.second) { |
|||
storm::expressions::Expression constraint = stateToVariableMap.at(state); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); |
|||
} |
|||
|
|||
storm::expressions::Expression rightHandSide = solver->getConstant(storm::utility::zero<ValueType>()); |
|||
if (min) { |
|||
constraint = constraint <= rightHandSide; |
|||
} else { |
|||
constraint = constraint >= rightHandSide; |
|||
} |
|||
solver->addConstraint("state" + std::to_string(state), constraint); |
|||
} |
|||
} |
|||
} |
|||
|
|||
solver->optimize(); |
|||
return solver->getContinuousValue(k); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::checkExpectedTime(bool minimize, storm::storage::BitVector const& goalStates) const { |
|||
// Reduce the problem of computing the expected time to computing expected rewards where the rewards
|
|||
// for all probabilistic states are zero and the reward values of Markovian states is 1.
|
|||
std::vector<ValueType> rewardValues(model.getNumberOfStates(), storm::utility::zero<ValueType>()); |
|||
storm::utility::vector::setVectorValues(rewardValues, model.getMarkovianStates(), storm::utility::one<ValueType>()); |
|||
return this->computeExpectedRewards(minimize, goalStates, rewardValues); |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
std::vector<ValueType> SparseMarkovAutomatonCslModelChecker<ValueType>::computeExpectedRewards(bool minimize, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards) const { |
|||
// Check whether the automaton is closed.
|
|||
if (!model.isClosed()) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Unable to compute expected time on non-closed Markov automaton."; |
|||
} |
|||
|
|||
// First, we need to check which states have infinite expected time (by definition).
|
|||
storm::storage::BitVector infinityStates; |
|||
if (minimize) { |
|||
// If we need to compute the minimum expected times, we have to set the values of those states to infinity that, under all schedulers,
|
|||
// reach a bottom SCC without a goal state.
|
|||
|
|||
// So we start by computing all bottom SCCs without goal states.
|
|||
storm::storage::StronglyConnectedComponentDecomposition<double> sccDecomposition(model, ~goalStates, true, true); |
|||
|
|||
// Now form the union of all these SCCs.
|
|||
storm::storage::BitVector unionOfNonGoalBSccs(model.getNumberOfStates()); |
|||
for (auto const& scc : sccDecomposition) { |
|||
for (auto state : scc) { |
|||
unionOfNonGoalBSccs.set(state); |
|||
} |
|||
} |
|||
|
|||
// Finally, if this union is non-empty, compute the states such that all schedulers reach some state of the union.
|
|||
if (!unionOfNonGoalBSccs.empty()) { |
|||
infinityStates = storm::utility::graph::performProbGreater0A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), model.getBackwardTransitions(), storm::storage::BitVector(model.getNumberOfStates(), true), unionOfNonGoalBSccs); |
|||
} else { |
|||
// Otherwise, we have no infinity states.
|
|||
infinityStates = storm::storage::BitVector(model.getNumberOfStates()); |
|||
} |
|||
} else { |
|||
// If we maximize the property, the expected time of a state is infinite, if an end-component without any goal state is reachable.
|
|||
|
|||
// So we start by computing all MECs that have no goal state.
|
|||
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(model, ~goalStates); |
|||
|
|||
// Now we form the union of all states in these end components.
|
|||
storm::storage::BitVector unionOfNonGoalMaximalEndComponents(model.getNumberOfStates()); |
|||
for (auto const& mec : mecDecomposition) { |
|||
for (auto const& stateActionPair : mec) { |
|||
unionOfNonGoalMaximalEndComponents.set(stateActionPair.first); |
|||
} |
|||
} |
|||
|
|||
if (!unionOfNonGoalMaximalEndComponents.empty()) { |
|||
// Now we need to check for which states there exists a scheduler that reaches one of the previously computed states.
|
|||
infinityStates = storm::utility::graph::performProbGreater0E(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), model.getBackwardTransitions(), storm::storage::BitVector(model.getNumberOfStates(), true), unionOfNonGoalMaximalEndComponents); |
|||
} else { |
|||
// Otherwise, we have no infinity states.
|
|||
infinityStates = storm::storage::BitVector(model.getNumberOfStates()); |
|||
} |
|||
} |
|||
|
|||
// Now we identify the states for which values need to be computed.
|
|||
storm::storage::BitVector maybeStates = ~(goalStates | infinityStates); |
|||
|
|||
// Then, we can eliminate the rows and columns for all states whose values are already known to be 0.
|
|||
std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); |
|||
storm::storage::SparseMatrix<ValueType> submatrix = model.getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates); |
|||
|
|||
// Now prepare the expected reward values for all states so they can be used as the right-hand side of the equation system.
|
|||
std::vector<ValueType> rewardValues(stateRewards); |
|||
for (auto state : model.getMarkovianStates()) { |
|||
rewardValues[state] = rewardValues[state] / model.getExitRates()[state]; |
|||
} |
|||
|
|||
// Finally, prepare the actual right-hand side.
|
|||
std::vector<ValueType> b(submatrix.getRowCount()); |
|||
storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, model.getNondeterministicChoiceIndices(), rewardValues); |
|||
|
|||
// Solve the corresponding system of equations.
|
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministiclinearEquationSolver = storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>(); |
|||
nondeterministiclinearEquationSolver->solveEquationSystem(minimize, submatrix, x, b); |
|||
|
|||
// Create resulting vector.
|
|||
std::vector<ValueType> result(model.getNumberOfStates()); |
|||
|
|||
// Set values of resulting vector according to previous result and return the result.
|
|||
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); |
|||
storm::utility::vector::setVectorValues(result, goalStates, storm::utility::zero<ValueType>()); |
|||
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); |
|||
|
|||
return result; |
|||
} |
|||
|
|||
template class SparseMarkovAutomatonCslModelChecker<double>; |
|||
} |
|||
} |
@ -1,635 +1,74 @@ |
|||
#ifndef STORM_MODELCHECKER_CSL_SPARSEMARKOVAUTOMATONCSLMODELCHECKER_H_ |
|||
#define STORM_MODELCHECKER_CSL_SPARSEMARKOVAUTOMATONCSLMODELCHECKER_H_ |
|||
|
|||
#include <utility> |
|||
|
|||
#include "src/modelchecker/csl/AbstractModelChecker.h" |
|||
#include "src/modelchecker/AbstractModelChecker.h" |
|||
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h" |
|||
#include "src/models/MarkovAutomaton.h" |
|||
#include "src/storage/BitVector.h" |
|||
#include "src/storage/MaximalEndComponentDecomposition.h" |
|||
#include "src/solver/NondeterministicLinearEquationSolver.h" |
|||
#include "src/solver/LpSolver.h" |
|||
#include "src/utility/solver.h" |
|||
#include "src/utility/graph.h" |
|||
#include "src/exceptions/NotImplementedException.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace csl { |
|||
|
|||
template<typename ValueType> |
|||
class SparseMarkovAutomatonCslModelChecker : public AbstractModelChecker<ValueType> { |
|||
public: |
|||
explicit SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver) : AbstractModelChecker<ValueType>(model), nondeterministicLinearEquationSolver(nondeterministicLinearEquationSolver) { |
|||
// Intentionally left empty. |
|||
} |
|||
|
|||
/* |
|||
This Second constructor is NEEDED and a workaround for a common Bug in C++ with nested templates |
|||
See: http://stackoverflow.com/questions/14401308/visual-c-cannot-deduce-given-template-arguments-for-function-used-as-defaul |
|||
*/ |
|||
explicit SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model) : AbstractModelChecker<ValueType>(model), nondeterministicLinearEquationSolver(storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>()) { |
|||
// Intentionally left empty. |
|||
} |
|||
|
|||
/*! |
|||
* Virtual destructor. Needs to be virtual, because this class has virtual methods. |
|||
*/ |
|||
virtual ~SparseMarkovAutomatonCslModelChecker() { |
|||
// Intentionally left empty. |
|||
} |
|||
|
|||
/*! |
|||
* Returns a constant reference to the MDP associated with this model checker. |
|||
* @returns A constant reference to the MDP associated with this model checker. |
|||
*/ |
|||
storm::models::MarkovAutomaton<ValueType> const& getModel() const { |
|||
return AbstractModelChecker<ValueType>::template getModel<storm::models::MarkovAutomaton<ValueType>>(); |
|||
} |
|||
|
|||
/*! |
|||
* Checks the given formula that is a P operator over a path formula featuring a value bound. |
|||
* |
|||
* @param formula The formula to check. |
|||
* @returns The set of states satisfying the formula represented by a bit vector. |
|||
*/ |
|||
virtual storm::storage::BitVector checkProbabilisticBoundOperator(storm::properties::csl::ProbabilisticBoundOperator<ValueType> const& formula) const override{ |
|||
// For P< and P<= the MA satisfies the formula iff the probability maximizing scheduler is used. |
|||
// For P> and P>= " iff the probability minimizing " . |
|||
if(formula.getComparisonOperator() == storm::properties::LESS || formula.getComparisonOperator() == storm::properties::LESS_EQUAL) { |
|||
this->minimumOperatorStack.push(false); |
|||
} |
|||
else { |
|||
this->minimumOperatorStack.push(true); |
|||
} |
|||
|
|||
// First, we need to compute the probability for satisfying the path formula for each state. |
|||
std::vector<ValueType> quantitativeResult = formula.getChild()->check(*this, false); |
|||
|
|||
//Remove the minimizing operator entry from the stack. |
|||
this->minimumOperatorStack.pop(); |
|||
|
|||
// Create resulting bit vector that will hold the yes/no-answer for every state. |
|||
storm::storage::BitVector result(quantitativeResult.size()); |
|||
|
|||
// Now, we can compute which states meet the bound specified in this operator and set the |
|||
// corresponding bits to true in the resulting vector. |
|||
for (uint_fast64_t i = 0; i < quantitativeResult.size(); ++i) { |
|||
if (formula.meetsBound(quantitativeResult[i])) { |
|||
result.set(i, true); |
|||
} |
|||
} |
|||
|
|||
return result; |
|||
} |
|||
|
|||
std::vector<ValueType> checkUntil(storm::properties::csl::Until<ValueType> const& formula, bool qualitative) const { |
|||
// Test wheter it is specified if the minimum or the maximum probabilities are to be computed. |
|||
if(this->minimumOperatorStack.empty()) { |
|||
LOG4CPLUS_ERROR(logger, "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."); |
|||
throw storm::exceptions::InvalidArgumentException() << "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."; |
|||
} |
|||
storm::storage::BitVector leftStates = formula.getLeft()->check(*this); |
|||
storm::storage::BitVector rightStates = formula.getRight()->check(*this); |
|||
return computeUnboundedUntilProbabilities(this->minimumOperatorStack.top(), leftStates, rightStates, qualitative).first; |
|||
} |
|||
|
|||
std::pair<std::vector<ValueType>, storm::storage::TotalScheduler> computeUnboundedUntilProbabilities(bool min, storm::storage::BitVector const& leftStates, storm::storage::BitVector const& rightStates, bool qualitative) const { |
|||
return storm::modelchecker::prctl::SparseMdpPrctlModelChecker<ValueType>::computeUnboundedUntilProbabilities(min, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getInitialStates(), leftStates, rightStates, nondeterministicLinearEquationSolver, qualitative); |
|||
} |
|||
|
|||
std::vector<ValueType> checkTimeBoundedUntil(storm::properties::csl::TimeBoundedUntil<ValueType> const& formula, bool qualitative) const { |
|||
throw storm::exceptions::NotImplementedException() << "Model checking Until formulas on Markov automata is not yet implemented."; |
|||
} |
|||
|
|||
std::vector<ValueType> checkTimeBoundedEventually(storm::properties::csl::TimeBoundedEventually<ValueType> const& formula, bool qualitative) const { |
|||
// Test wheter it is specified if the minimum or the maximum probabilities are to be computed. |
|||
if(this->minimumOperatorStack.empty()) { |
|||
LOG4CPLUS_ERROR(logger, "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."); |
|||
throw storm::exceptions::InvalidArgumentException() << "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."; |
|||
} |
|||
storm::storage::BitVector goalStates = formula.getChild()->check(*this); |
|||
return this->checkTimeBoundedEventually(this->minimumOperatorStack.top(), goalStates, formula.getLowerBound(), formula.getUpperBound()); |
|||
} |
|||
|
|||
std::vector<ValueType> checkGlobally(storm::properties::csl::Globally<ValueType> const& formula, bool qualitative) const { |
|||
throw storm::exceptions::NotImplementedException() << "Model checking Globally formulas on Markov automata is not yet implemented."; |
|||
} |
|||
|
|||
std::vector<ValueType> checkEventually(storm::properties::csl::Eventually<ValueType> const& formula, bool qualitative) const { |
|||
// Test wheter it is specified if the minimum or the maximum probabilities are to be computed. |
|||
if(this->minimumOperatorStack.empty()) { |
|||
LOG4CPLUS_ERROR(logger, "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."); |
|||
throw storm::exceptions::InvalidArgumentException() << "Formula does not specify either min or max optimality, which is not meaningful over nondeterministic models."; |
|||
} |
|||
storm::storage::BitVector subFormulaStates = formula.getChild()->check(*this); |
|||
return computeUnboundedUntilProbabilities(this->minimumOperatorStack.top(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), subFormulaStates, qualitative).first; |
|||
} |
|||
|
|||
std::vector<ValueType> checkNext(storm::properties::csl::Next<ValueType> const& formula, bool qualitative) const { |
|||
throw storm::exceptions::NotImplementedException() << "Model checking Next formulas on Markov automata is not yet implemented."; |
|||
} |
|||
|
|||
static void computeBoundedReachabilityProbabilities(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps) { |
|||
// Start by computing four sparse matrices: |
|||
// * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states. |
|||
// * a matrix aMarkovianToProbabilistic with all (discretized) transitions from Markovian non-goal states to all probabilistic non-goal states. |
|||
// * a matrix aProbabilistic with all (non-discretized) transitions from probabilistic non-goal states to other probabilistic non-goal states. |
|||
// * a matrix aProbabilisticToMarkovian with all (non-discretized) transitions from probabilistic non-goal states to all Markovian non-goal states. |
|||
typename storm::storage::SparseMatrix<ValueType> aMarkovian = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, markovianNonGoalStates, true); |
|||
typename storm::storage::SparseMatrix<ValueType> aMarkovianToProbabilistic = transitionMatrix.getSubmatrix(true, markovianNonGoalStates, probabilisticNonGoalStates); |
|||
typename storm::storage::SparseMatrix<ValueType> aProbabilistic = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, probabilisticNonGoalStates); |
|||
typename storm::storage::SparseMatrix<ValueType> aProbabilisticToMarkovian = transitionMatrix.getSubmatrix(true, probabilisticNonGoalStates, markovianNonGoalStates); |
|||
|
|||
// The matrices with transitions from Markovian states need to be digitized. |
|||
// Digitize aMarkovian. Based on whether the transition is a self-loop or not, we apply the two digitization rules. |
|||
uint_fast64_t rowIndex = 0; |
|||
for (auto state : markovianNonGoalStates) { |
|||
for (auto& element : aMarkovian.getRow(rowIndex)) { |
|||
ValueType eTerm = std::exp(-exitRates[state] * delta); |
|||
if (element.getColumn() == rowIndex) { |
|||
element.setValue((storm::utility::constantOne<ValueType>() - eTerm) * element.getValue() + eTerm); |
|||
} else { |
|||
element.setValue((storm::utility::constantOne<ValueType>() - eTerm) * element.getValue()); |
|||
} |
|||
} |
|||
++rowIndex; |
|||
} |
|||
|
|||
// Digitize aMarkovianToProbabilistic. As there are no self-loops in this case, we only need to apply the digitization formula for regular successors. |
|||
rowIndex = 0; |
|||
for (auto state : markovianNonGoalStates) { |
|||
for (auto& element : aMarkovianToProbabilistic.getRow(rowIndex)) { |
|||
element.setValue((1 - std::exp(-exitRates[state] * delta)) * element.getValue()); |
|||
} |
|||
++rowIndex; |
|||
} |
|||
|
|||
// Initialize the two vectors that hold the variable one-step probabilities to all target states for probabilistic and Markovian (non-goal) states. |
|||
std::vector<ValueType> bProbabilistic(aProbabilistic.getRowCount()); |
|||
std::vector<ValueType> bMarkovian(markovianNonGoalStates.getNumberOfSetBits()); |
|||
|
|||
// Compute the two fixed right-hand side vectors, one for Markovian states and one for the probabilistic ones. |
|||
std::vector<ValueType> bProbabilisticFixed = transitionMatrix.getConstrainedRowSumVector(probabilisticNonGoalStates, goalStates); |
|||
std::vector<ValueType> bMarkovianFixed; |
|||
bMarkovianFixed.reserve(markovianNonGoalStates.getNumberOfSetBits()); |
|||
for (auto state : markovianNonGoalStates) { |
|||
bMarkovianFixed.push_back(storm::utility::constantZero<ValueType>()); |
|||
|
|||
for (auto& element : transitionMatrix.getRowGroup(state)) { |
|||
if (goalStates.get(element.getColumn())) { |
|||
bMarkovianFixed.back() += (1 - std::exp(-exitRates[state] * delta)) * element.getValue(); |
|||
} |
|||
} |
|||
} |
|||
|
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministiclinearEquationSolver = storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>(); |
|||
|
|||
// Perform the actual value iteration |
|||
// * loop until the step bound has been reached |
|||
// * in the loop: |
|||
// * perform value iteration using A_PSwG, v_PS and the vector b where b = (A * 1_G)|PS + A_PStoMS * v_MS |
|||
// and 1_G being the characteristic vector for all goal states. |
|||
// * perform one timed-step using v_MS := A_MSwG * v_MS + A_MStoPS * v_PS + (A * 1_G)|MS |
|||
std::vector<ValueType> markovianNonGoalValuesSwap(markovianNonGoalValues); |
|||
std::vector<ValueType> multiplicationResultScratchMemory(aProbabilistic.getRowCount()); |
|||
std::vector<ValueType> aProbabilisticScratchMemory(probabilisticNonGoalValues.size()); |
|||
for (uint_fast64_t currentStep = 0; currentStep < numberOfSteps; ++currentStep) { |
|||
// Start by (re-)computing bProbabilistic = bProbabilisticFixed + aProbabilisticToMarkovian * vMarkovian. |
|||
aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); |
|||
storm::utility::vector::addVectorsInPlace(bProbabilistic, bProbabilisticFixed); |
|||
|
|||
// Now perform the inner value iteration for probabilistic states. |
|||
nondeterministiclinearEquationSolver->solveEquationSystem(min, aProbabilistic, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); |
|||
|
|||
// (Re-)compute bMarkovian = bMarkovianFixed + aMarkovianToProbabilistic * vProbabilistic. |
|||
aMarkovianToProbabilistic.multiplyWithVector(probabilisticNonGoalValues, bMarkovian); |
|||
storm::utility::vector::addVectorsInPlace(bMarkovian, bMarkovianFixed); |
|||
aMarkovian.multiplyWithVector(markovianNonGoalValues, markovianNonGoalValuesSwap); |
|||
std::swap(markovianNonGoalValues, markovianNonGoalValuesSwap); |
|||
storm::utility::vector::addVectorsInPlace(markovianNonGoalValues, bMarkovian); |
|||
} |
|||
|
|||
// After the loop, perform one more step of the value iteration for PS states. |
|||
aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); |
|||
storm::utility::vector::addVectorsInPlace(bProbabilistic, bProbabilisticFixed); |
|||
nondeterministiclinearEquationSolver->solveEquationSystem(min, aProbabilistic, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); |
|||
} |
|||
|
|||
std::vector<ValueType> checkTimeBoundedEventually(bool min, storm::storage::BitVector const& goalStates, ValueType lowerBound, ValueType upperBound) const { |
|||
// Check whether the automaton is closed. |
|||
if (!this->getModel().isClosed()) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Unable to compute time-bounded reachability on non-closed Markov automaton."; |
|||
} |
|||
|
|||
// Check whether the given bounds were valid. |
|||
if (lowerBound < storm::utility::constantZero<ValueType>() || upperBound < storm::utility::constantZero<ValueType>() || upperBound < lowerBound) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Illegal interval ["; |
|||
} |
|||
|
|||
// Get some data fields for convenient access. |
|||
typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix(); |
|||
std::vector<ValueType> const& exitRates = this->getModel().getExitRates(); |
|||
storm::storage::BitVector const& markovianStates = this->getModel().getMarkovianStates(); |
|||
|
|||
// (1) Compute the accuracy we need to achieve the required error bound. |
|||
ValueType maxExitRate = this->getModel().getMaximalExitRate(); |
|||
ValueType delta = (2 * storm::settings::generalSettings().getPrecision()) / (upperBound * maxExitRate * maxExitRate); |
|||
|
|||
// (2) Compute the number of steps we need to make for the interval. |
|||
uint_fast64_t numberOfSteps = static_cast<uint_fast64_t>(std::ceil((upperBound - lowerBound) / delta)); |
|||
std::cout << "Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [" << lowerBound << ", " << upperBound << "]." << std::endl; |
|||
|
|||
// (3) Compute the non-goal states and initialize two vectors |
|||
// * vProbabilistic holds the probability values of probabilistic non-goal states. |
|||
// * vMarkovian holds the probability values of Markovian non-goal states. |
|||
storm::storage::BitVector const& markovianNonGoalStates = markovianStates & ~goalStates; |
|||
storm::storage::BitVector const& probabilisticNonGoalStates = ~markovianStates & ~goalStates; |
|||
std::vector<ValueType> vProbabilistic(probabilisticNonGoalStates.getNumberOfSetBits()); |
|||
std::vector<ValueType> vMarkovian(markovianNonGoalStates.getNumberOfSetBits()); |
|||
|
|||
computeBoundedReachabilityProbabilities(min, transitionMatrix, exitRates, markovianStates, goalStates, markovianNonGoalStates, probabilisticNonGoalStates, vMarkovian, vProbabilistic, delta, numberOfSteps); |
|||
|
|||
// (4) If the lower bound of interval was non-zero, we need to take the current values as the starting values for a subsequent value iteration. |
|||
if (lowerBound != storm::utility::constantZero<ValueType>()) { |
|||
std::vector<ValueType> vAllProbabilistic((~markovianStates).getNumberOfSetBits()); |
|||
std::vector<ValueType> vAllMarkovian(markovianStates.getNumberOfSetBits()); |
|||
|
|||
// Create the starting value vectors for the next value iteration based on the results of the previous one. |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, goalStates % ~markovianStates, storm::utility::constantOne<ValueType>()); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllProbabilistic, ~goalStates % ~markovianStates, vProbabilistic); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, goalStates % markovianStates, storm::utility::constantOne<ValueType>()); |
|||
storm::utility::vector::setVectorValues<ValueType>(vAllMarkovian, ~goalStates % markovianStates, vMarkovian); |
|||
|
|||
// Compute the number of steps to reach the target interval. |
|||
numberOfSteps = static_cast<uint_fast64_t>(std::ceil(lowerBound / delta)); |
|||
std::cout << "Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [0, " << lowerBound << "]." << std::endl; |
|||
|
|||
// Compute the bounded reachability for interval [0, b-a]. |
|||
computeBoundedReachabilityProbabilities(min, transitionMatrix, exitRates, markovianStates, storm::storage::BitVector(this->getModel().getNumberOfStates()), markovianStates, ~markovianStates, vAllMarkovian, vAllProbabilistic, delta, numberOfSteps); |
|||
|
|||
// Create the result vector out of vAllProbabilistic and vAllMarkovian and return it. |
|||
std::vector<ValueType> result(this->getModel().getNumberOfStates()); |
|||
storm::utility::vector::setVectorValues(result, ~markovianStates, vAllProbabilistic); |
|||
storm::utility::vector::setVectorValues(result, markovianStates, vAllMarkovian); |
|||
|
|||
return result; |
|||
} else { |
|||
// Create the result vector out of 1_G, vProbabilistic and vMarkovian and return it. |
|||
std::vector<ValueType> result(this->getModel().getNumberOfStates()); |
|||
storm::utility::vector::setVectorValues<ValueType>(result, goalStates, storm::utility::constantOne<ValueType>()); |
|||
storm::utility::vector::setVectorValues(result, probabilisticNonGoalStates, vProbabilistic); |
|||
storm::utility::vector::setVectorValues(result, markovianNonGoalStates, vMarkovian); |
|||
return result; |
|||
} |
|||
} |
|||
|
|||
std::vector<ValueType> checkLongRunAverage(bool min, storm::storage::BitVector const& goalStates) const { |
|||
// Check whether the automaton is closed. |
|||
if (!this->getModel().isClosed()) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Unable to compute long-run average on non-closed Markov automaton."; |
|||
} |
|||
|
|||
// If there are no goal states, we avoid the computation and directly return zero. |
|||
if (goalStates.empty()) { |
|||
return std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::constantZero<ValueType>()); |
|||
} |
|||
|
|||
// Likewise, if all bits are set, we can avoid the computation and set. |
|||
if ((~goalStates).empty()) { |
|||
return std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::constantOne<ValueType>()); |
|||
} |
|||
|
|||
// Start by decomposing the Markov automaton into its MECs. |
|||
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(this->getModel()); |
|||
|
|||
// Get some data members for convenience. |
|||
typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix(); |
|||
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); |
|||
|
|||
// Now start with compute the long-run average for all end components in isolation. |
|||
std::vector<ValueType> lraValuesForEndComponents; |
|||
|
|||
// While doing so, we already gather some information for the following steps. |
|||
std::vector<uint_fast64_t> stateToMecIndexMap(this->getModel().getNumberOfStates()); |
|||
storm::storage::BitVector statesInMecs(this->getModel().getNumberOfStates()); |
|||
|
|||
for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { |
|||
storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; |
|||
|
|||
// Gather information for later use. |
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
|
|||
statesInMecs.set(state); |
|||
stateToMecIndexMap[state] = currentMecIndex; |
|||
} |
|||
|
|||
// Compute the LRA value for the current MEC. |
|||
lraValuesForEndComponents.push_back(this->computeLraForMaximalEndComponent(min, transitionMatrix, nondeterministicChoiceIndices, this->getModel().getMarkovianStates(), this->getModel().getExitRates(), goalStates, mec, currentMecIndex)); |
|||
} |
|||
|
|||
// For fast transition rewriting, we build some auxiliary data structures. |
|||
storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; |
|||
uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); |
|||
uint_fast64_t lastStateNotInMecs = 0; |
|||
uint_fast64_t numberOfStatesNotInMecs = 0; |
|||
std::vector<uint_fast64_t> statesNotInMecsBeforeIndex; |
|||
statesNotInMecsBeforeIndex.reserve(this->getModel().getNumberOfStates()); |
|||
for (auto state : statesNotContainedInAnyMec) { |
|||
while (lastStateNotInMecs <= state) { |
|||
statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs); |
|||
++lastStateNotInMecs; |
|||
} |
|||
++numberOfStatesNotInMecs; |
|||
} |
|||
|
|||
// Finally, we are ready to create the SSP matrix and right-hand side of the SSP. |
|||
std::vector<ValueType> b; |
|||
typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); |
|||
|
|||
// If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications). |
|||
uint_fast64_t currentChoice = 0; |
|||
for (auto state : statesNotContainedInAnyMec) { |
|||
sspMatrixBuilder.newRowGroup(currentChoice); |
|||
|
|||
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { |
|||
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); |
|||
b.push_back(storm::utility::constantZero<ValueType>()); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
if (statesNotContainedInAnyMec.get(element.getColumn())) { |
|||
// If the target state is not contained in an MEC, we can copy over the entry. |
|||
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); |
|||
} else { |
|||
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector |
|||
// so that we are able to write the cumulative probability to the MEC into the matrix. |
|||
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); |
|||
} |
|||
} |
|||
|
|||
// Now insert all (cumulative) probability values that target an MEC. |
|||
for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { |
|||
if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { |
|||
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Now we are ready to construct the choices for the auxiliary states. |
|||
for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { |
|||
storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; |
|||
sspMatrixBuilder.newRowGroup(currentChoice); |
|||
|
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
boost::container::flat_set<uint_fast64_t> const& choicesInMec = stateChoicesPair.second; |
|||
|
|||
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { |
|||
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size()); |
|||
|
|||
// If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state. |
|||
if (choicesInMec.find(choice) == choicesInMec.end()) { |
|||
b.push_back(storm::utility::constantZero<ValueType>()); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
if (statesNotContainedInAnyMec.get(element.getColumn())) { |
|||
// If the target state is not contained in an MEC, we can copy over the entry. |
|||
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); |
|||
} else { |
|||
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector |
|||
// so that we are able to write the cumulative probability to the MEC into the matrix. |
|||
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); |
|||
} |
|||
} |
|||
|
|||
// Now insert all (cumulative) probability values that target an MEC. |
|||
for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { |
|||
if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { |
|||
// If the target MEC is the same as the current one, instead of adding a transition, we need to add the weighted reward |
|||
// to the right-hand side vector of the SSP. |
|||
if (mecIndex == targetMecIndex) { |
|||
b.back() += auxiliaryStateToProbabilityMap[mecIndex] * lraValuesForEndComponents[mecIndex]; |
|||
} else { |
|||
// Otherwise, we add a transition to the auxiliary state that is associated with the target MEC. |
|||
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); |
|||
} |
|||
} |
|||
} |
|||
|
|||
++currentChoice; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC. |
|||
++currentChoice; |
|||
b.push_back(lraValuesForEndComponents[mecIndex]); |
|||
} |
|||
|
|||
// Finalize the matrix and solve the corresponding system of equations. |
|||
storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice); |
|||
|
|||
std::vector<ValueType> x(numberOfStatesNotInMecs + mecDecomposition.size()); |
|||
nondeterministicLinearEquationSolver->solveEquationSystem(min, sspMatrix, x, b); |
|||
|
|||
// Prepare result vector. |
|||
std::vector<ValueType> result(this->getModel().getNumberOfStates()); |
|||
|
|||
// Set the values for states not contained in MECs. |
|||
storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, x); |
|||
|
|||
// Set the values for all states in MECs. |
|||
for (auto state : statesInMecs) { |
|||
result[state] = lraValuesForEndComponents[stateToMecIndexMap[state]]; |
|||
} |
|||
|
|||
return result; |
|||
} |
|||
|
|||
std::vector<ValueType> checkExpectedTime(bool min, storm::storage::BitVector const& goalStates) const { |
|||
// Reduce the problem of computing the expected time to computing expected rewards where the rewards |
|||
// for all probabilistic states are zero and the reward values of Markovian states is 1. |
|||
std::vector<ValueType> rewardValues(this->getModel().getNumberOfStates(), storm::utility::constantZero<ValueType>()); |
|||
storm::utility::vector::setVectorValues(rewardValues, this->getModel().getMarkovianStates(), storm::utility::constantOne<ValueType>()); |
|||
return this->computeExpectedRewards(min, goalStates, rewardValues); |
|||
} |
|||
|
|||
protected: |
|||
/*! |
|||
* Computes the long-run average value for the given maximal end component of a Markov automaton. |
|||
* |
|||
* @param min Sets whether the long-run average is to be minimized or maximized. |
|||
* @param transitionMatrix The transition matrix of the underlying Markov automaton. |
|||
* @param nondeterministicChoiceIndices A vector indicating at which row the choice of a given state begins. |
|||
* @param markovianStates A bit vector storing all markovian states. |
|||
* @param exitRates A vector with exit rates for all states. Exit rates of probabilistic states are assumed to be zero. |
|||
* @param goalStates A bit vector indicating which states are to be considered as goal states. |
|||
* @param mec The maximal end component to consider for computing the long-run average. |
|||
* @param mecIndex The index of the MEC. |
|||
* @return The long-run average of being in a goal state for the given MEC. |
|||
*/ |
|||
static ValueType computeLraForMaximalEndComponent(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec, uint_fast64_t mecIndex = 0) { |
|||
std::shared_ptr<storm::solver::LpSolver> solver = storm::utility::solver::getLpSolver("LRA for MEC"); |
|||
solver->setModelSense(min ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize); |
|||
|
|||
// First, we need to create the variables for the problem. |
|||
std::map<uint_fast64_t, storm::expressions::Variable> stateToVariableMap; |
|||
for (auto const& stateChoicesPair : mec) { |
|||
std::string variableName = "x" + std::to_string(stateChoicesPair.first); |
|||
stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); |
|||
} |
|||
storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", 1); |
|||
solver->update(); |
|||
|
|||
// Now we encode the problem as constraints. |
|||
for (auto const& stateChoicesPair : mec) { |
|||
uint_fast64_t state = stateChoicesPair.first; |
|||
|
|||
// Now, based on the type of the state, create a suitable constraint. |
|||
if (markovianStates.get(state)) { |
|||
storm::expressions::Expression constraint = stateToVariableMap.at(state); |
|||
|
|||
for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) { |
|||
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); |
|||
} |
|||
|
|||
constraint = constraint + solver->getConstant(storm::utility::constantOne<ValueType>() / exitRates[state]) * k; |
|||
storm::expressions::Expression rightHandSide = goalStates.get(state) ? solver->getConstant(storm::utility::constantOne<ValueType>() / exitRates[state]) : solver->getConstant(0); |
|||
if (min) { |
|||
constraint = constraint <= rightHandSide; |
|||
} else { |
|||
constraint = constraint >= rightHandSide; |
|||
} |
|||
solver->addConstraint("state" + std::to_string(state), constraint); |
|||
} else { |
|||
// For probabilistic states, we want to add the constraint x_s <= sum P(s, a, s') * x_s' where a is the current action |
|||
// and the sum ranges over all states s'. |
|||
for (auto choice : stateChoicesPair.second) { |
|||
storm::expressions::Expression constraint = stateToVariableMap.at(state); |
|||
|
|||
for (auto element : transitionMatrix.getRow(choice)) { |
|||
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); |
|||
} |
|||
|
|||
storm::expressions::Expression rightHandSide = solver->getConstant(storm::utility::constantZero<ValueType>()); |
|||
if (min) { |
|||
constraint = constraint <= rightHandSide; |
|||
} else { |
|||
constraint = constraint >= rightHandSide; |
|||
} |
|||
solver->addConstraint("state" + std::to_string(state), constraint); |
|||
} |
|||
} |
|||
} |
|||
|
|||
solver->optimize(); |
|||
return solver->getContinuousValue(k); |
|||
} |
|||
|
|||
/*! |
|||
* Computes the expected reward that is gained from each state before entering any of the goal states. |
|||
* |
|||
* @param min Indicates whether minimal or maximal rewards are to be computed. |
|||
* @param goalStates The goal states that define until which point rewards are gained. |
|||
* @param stateRewards A vector that defines the reward gained in each state. For probabilistic states, this is an instantaneous reward |
|||
* that is fully gained and for Markovian states the actually gained reward is dependent on the expected time to stay in the |
|||
* state, i.e. it is gouverned by the exit rate of the state. |
|||
* @return A vector that contains the expected reward for each state of the model. |
|||
*/ |
|||
std::vector<ValueType> computeExpectedRewards(bool min, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards) const { |
|||
// Check whether the automaton is closed. |
|||
if (!this->getModel().isClosed()) { |
|||
throw storm::exceptions::InvalidArgumentException() << "Unable to compute expected time on non-closed Markov automaton."; |
|||
} |
|||
|
|||
// First, we need to check which states have infinite expected time (by definition). |
|||
storm::storage::BitVector infinityStates; |
|||
if (min) { |
|||
// If we need to compute the minimum expected times, we have to set the values of those states to infinity that, under all schedulers, |
|||
// reach a bottom SCC without a goal state. |
|||
|
|||
// So we start by computing all bottom SCCs without goal states. |
|||
storm::storage::StronglyConnectedComponentDecomposition<double> sccDecomposition(this->getModel(), ~goalStates, true, true); |
|||
|
|||
// Now form the union of all these SCCs. |
|||
storm::storage::BitVector unionOfNonGoalBSccs(this->getModel().getNumberOfStates()); |
|||
for (auto const& scc : sccDecomposition) { |
|||
for (auto state : scc) { |
|||
unionOfNonGoalBSccs.set(state); |
|||
} |
|||
} |
|||
|
|||
// Finally, if this union is non-empty, compute the states such that all schedulers reach some state of the union. |
|||
if (!unionOfNonGoalBSccs.empty()) { |
|||
infinityStates = storm::utility::graph::performProbGreater0A(this->getModel().getTransitionMatrix(), this->getModel().getNondeterministicChoiceIndices(), this->getModel().getBackwardTransitions(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), unionOfNonGoalBSccs); |
|||
} else { |
|||
// Otherwise, we have no infinity states. |
|||
infinityStates = storm::storage::BitVector(this->getModel().getNumberOfStates()); |
|||
} |
|||
} else { |
|||
// If we maximize the property, the expected time of a state is infinite, if an end-component without any goal state is reachable. |
|||
|
|||
// So we start by computing all MECs that have no goal state. |
|||
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(this->getModel(), ~goalStates); |
|||
|
|||
// Now we form the union of all states in these end components. |
|||
storm::storage::BitVector unionOfNonGoalMaximalEndComponents(this->getModel().getNumberOfStates()); |
|||
for (auto const& mec : mecDecomposition) { |
|||
for (auto const& stateActionPair : mec) { |
|||
unionOfNonGoalMaximalEndComponents.set(stateActionPair.first); |
|||
} |
|||
} |
|||
|
|||
if (!unionOfNonGoalMaximalEndComponents.empty()) { |
|||
// Now we need to check for which states there exists a scheduler that reaches one of the previously computed states. |
|||
infinityStates = storm::utility::graph::performProbGreater0E(this->getModel().getTransitionMatrix(), this->getModel().getNondeterministicChoiceIndices(), this->getModel().getBackwardTransitions(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), unionOfNonGoalMaximalEndComponents); |
|||
} else { |
|||
// Otherwise, we have no infinity states. |
|||
infinityStates = storm::storage::BitVector(this->getModel().getNumberOfStates()); |
|||
} |
|||
} |
|||
|
|||
// Now we identify the states for which values need to be computed. |
|||
storm::storage::BitVector maybeStates = ~(goalStates | infinityStates); |
|||
|
|||
// Then, we can eliminate the rows and columns for all states whose values are already known to be 0. |
|||
std::vector<ValueType> x(maybeStates.getNumberOfSetBits()); |
|||
storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates); |
|||
|
|||
// Now prepare the expected reward values for all states so they can be used as the right-hand side of the equation system. |
|||
std::vector<ValueType> rewardValues(stateRewards); |
|||
for (auto state : this->getModel().getMarkovianStates()) { |
|||
rewardValues[state] = rewardValues[state] / this->getModel().getExitRates()[state]; |
|||
} |
|||
|
|||
// Finally, prepare the actual right-hand side. |
|||
std::vector<ValueType> b(submatrix.getRowCount()); |
|||
storm::utility::vector::selectVectorValuesRepeatedly(b, maybeStates, this->getModel().getNondeterministicChoiceIndices(), rewardValues); |
|||
|
|||
// Solve the corresponding system of equations. |
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministiclinearEquationSolver = storm::utility::solver::getNondeterministicLinearEquationSolver<ValueType>(); |
|||
nondeterministiclinearEquationSolver->solveEquationSystem(min, submatrix, x, b); |
|||
|
|||
// Create resulting vector. |
|||
std::vector<ValueType> result(this->getModel().getNumberOfStates()); |
|||
|
|||
// Set values of resulting vector according to previous result and return the result. |
|||
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); |
|||
storm::utility::vector::setVectorValues(result, goalStates, storm::utility::constantZero<ValueType>()); |
|||
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::constantInfinity<ValueType>()); |
|||
|
|||
return result; |
|||
} |
|||
|
|||
/*! |
|||
* A solver that is used for solving systems of linear equations that are the result of nondeterministic choices. |
|||
*/ |
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver; |
|||
}; |
|||
} |
|||
|
|||
template<typename ValueType> |
|||
class SparseMarkovAutomatonCslModelChecker : public AbstractModelChecker { |
|||
public: |
|||
explicit SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver); |
|||
explicit SparseMarkovAutomatonCslModelChecker(storm::models::MarkovAutomaton<ValueType> const& model); |
|||
|
|||
// The implemented methods of the AbstractModelChecker interface. |
|||
virtual bool canHandle(storm::logic::Formula const& formula) const override; |
|||
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; |
|||
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; |
|||
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; |
|||
virtual std::unique_ptr<CheckResult> checkBooleanLiteralFormula(storm::logic::BooleanLiteralFormula const& stateFormula) override; |
|||
virtual std::unique_ptr<CheckResult> checkAtomicLabelFormula(storm::logic::AtomicLabelFormula const& stateFormula) override; |
|||
|
|||
private: |
|||
// The methods that perform the actual checking. |
|||
std::vector<ValueType> computeBoundedUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair) const; |
|||
static void computeBoundedReachabilityProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps); |
|||
std::vector<ValueType> computeUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative) const; |
|||
std::vector<ValueType> computeReachabilityRewardsHelper(bool minimize, storm::storage::BitVector const& targetStates, bool qualitative) const; |
|||
|
|||
// FIXME: Methods that are not yet accessible from the outside and need to be included in the checking framework. |
|||
std::vector<ValueType> checkLongRunAverage(bool minimize, storm::storage::BitVector const& goalStates) const; |
|||
std::vector<ValueType> checkExpectedTime(bool minimize, storm::storage::BitVector const& goalStates) const; |
|||
|
|||
/*! |
|||
* Computes the long-run average value for the given maximal end component of a Markov automaton. |
|||
* |
|||
* @param minimize Sets whether the long-run average is to be minimized or maximized. |
|||
* @param transitionMatrix The transition matrix of the underlying Markov automaton. |
|||
* @param nondeterministicChoiceIndices A vector indicating at which row the choice of a given state begins. |
|||
* @param markovianStates A bit vector storing all markovian states. |
|||
* @param exitRates A vector with exit rates for all states. Exit rates of probabilistic states are assumed to be zero. |
|||
* @param goalStates A bit vector indicating which states are to be considered as goal states. |
|||
* @param mec The maximal end component to consider for computing the long-run average. |
|||
* @param mecIndex The index of the MEC. |
|||
* @return The long-run average of being in a goal state for the given MEC. |
|||
*/ |
|||
static ValueType computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec, uint_fast64_t mecIndex = 0); |
|||
|
|||
/*! |
|||
* Computes the expected reward that is gained from each state before entering any of the goal states. |
|||
* |
|||
* @param minimize Indicates whether minimal or maximal rewards are to be computed. |
|||
* @param goalStates The goal states that define until which point rewards are gained. |
|||
* @param stateRewards A vector that defines the reward gained in each state. For probabilistic states, this is an instantaneous reward |
|||
* that is fully gained and for Markovian states the actually gained reward is dependent on the expected time to stay in the |
|||
* state, i.e. it is gouverned by the exit rate of the state. |
|||
* @return A vector that contains the expected reward for each state of the model. |
|||
*/ |
|||
std::vector<ValueType> computeExpectedRewards(bool minimize, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards) const; |
|||
|
|||
// The model this model checker is supposed to analyze. |
|||
storm::models::MarkovAutomaton<ValueType> const& model; |
|||
|
|||
// A solver that is used for solving systems of linear equations that are the result of nondeterministic choices. |
|||
std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<ValueType>> nondeterministicLinearEquationSolver; |
|||
}; |
|||
} |
|||
} |
|||
|
|||
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue