Browse Source

Further work on iterators for sparse matrix.

Former-commit-id: 8e78262161
tempestpy_adaptions
dehnert 11 years ago
parent
commit
cf2b84b281
  1. 2
      CMakeLists.txt
  2. 117
      src/adapters/GmmxxAdapter.h
  3. 50
      src/counterexamples/MILPMinimalLabelSetGenerator.h
  4. 100
      src/counterexamples/PathBasedSubsystemGenerator.h
  5. 32
      src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h
  6. 2
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h
  7. 8
      src/models/AbstractDeterministicModel.h
  8. 2
      src/models/AbstractModel.h
  9. 16
      src/models/AbstractNondeterministicModel.h
  10. 14
      src/models/Dtmc.h
  11. 18
      src/models/MarkovAutomaton.h
  12. 16
      src/parser/DeterministicSparseTransitionParser.cpp
  13. 14
      src/storage/MaximalEndComponentDecomposition.cpp
  14. 106
      src/storage/SparseMatrix.cpp
  15. 20
      src/storage/SparseMatrix.h
  16. 20
      src/storage/StronglyConnectedComponentDecomposition.cpp
  17. 10
      src/utility/counterexamples.h
  18. 98
      src/utility/graph.h
  19. 4
      src/utility/matrix.h
  20. 24
      test/functional/storage/SparseMatrixTest.cpp
  21. 2
      test/performance/graph/GraphTest.cpp
  22. 1
      test/performance/modelchecker/GmmxxDtmcPrctModelCheckerTest.cpp
  23. 2
      test/performance/storage/SparseMatrixTest.cpp

2
CMakeLists.txt

@ -144,7 +144,7 @@ else(CLANG)
# As CLANG is not set as a variable, we need to set it in case we have not matched another compiler.
set (CLANG ON)
# Set standard flags for clang
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops -O4")
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops -O3")
if(UNIX AND NOT APPLE AND NOT USE_LIBCXX)
set(CLANG_STDLIB libstdc++)
message(STATUS "StoRM - Linking against libstdc++")

117
src/adapters/GmmxxAdapter.h

@ -40,13 +40,21 @@ public:
// Copy Row Indications
std::copy(matrix.rowIndications.begin(), matrix.rowIndications.end(), result->jc.begin());
// Copy Columns Indications
result->ir.resize(realNonZeros);
std::copy(matrix.columnIndications.begin(), matrix.columnIndications.end(), result->ir.begin());
// And do the same thing with the actual values.
result->pr.resize(realNonZeros);
std::copy(matrix.valueStorage.begin(), matrix.valueStorage.end(), result->pr.begin());
// Copy columns and values.
std::vector<T> values;
values.reserve(matrix.getEntryCount());
std::vector<uint_fast64_t> columns;
columns.reserve(matrix.getEntryCount());
for (auto const& entry : matrix) {
columns.emplace_back(entry.first);
values.emplace_back(entry.second);
}
std::swap(result->ir, columns);
std::swap(result->pr, values);
LOG4CPLUS_DEBUG(logger, "Done converting matrix to gmm++ format.");
return result;
@ -59,6 +67,7 @@ public:
template<class T>
static gmm::csr_matrix<T>* toGmmxxSparseMatrix(storm::storage::SparseMatrix<T>&& matrix) {
uint_fast64_t realNonZeros = matrix.getEntryCount();
std::cout << "here?!" << std::endl;
LOG4CPLUS_DEBUG(logger, "Converting matrix with " << realNonZeros << " non-zeros to gmm++ format.");
// Prepare the resulting matrix.
@ -71,91 +80,25 @@ public:
// Move Row Indications
result->jc.~vectorType_ull_t(); // Call Destructor inplace
new (&result->jc) vectorType_ull_t(std::move(*storm::utility::ConversionHelper::toUnsignedLongLong(&matrix.rowIndications)));
// Move Columns Indications
result->ir.~vectorType_ull_t(); // Call Destructor inplace
new (&result->ir) vectorType_ull_t(std::move(*storm::utility::ConversionHelper::toUnsignedLongLong(&matrix.columnIndications)));
// And do the same thing with the actual values.
result->pr.~vectorType_T_t(); // Call Destructor inplace
new (&result->pr) vectorType_T_t(std::move(matrix.valueStorage));
// Copy columns and values.
std::vector<T> values;
values.reserve(matrix.getEntryCount());
std::vector<uint_fast64_t> columns;
columns.reserve(matrix.getEntryCount());
for (auto const& entry : matrix) {
columns.emplace_back(entry.first);
values.emplace_back(entry.second);
}
std::swap(result->ir, columns);
std::swap(result->pr, values);
LOG4CPLUS_DEBUG(logger, "Done converting matrix to gmm++ format.");
return result;
}
/*!
* Converts a sparse matrix in the gmm++ format to Storm Sparse Matrix format.
* @return A pointer to a row-major sparse matrix in our format.
*/
template<class T>
static storm::storage::SparseMatrix<T>* fromGmmxxSparseMatrix(gmm::csr_matrix<T> const& matrix) {
uint_fast64_t realNonZeros = gmm::nnz(matrix);
LOG4CPLUS_DEBUG(logger, "Converting matrix with " << realNonZeros << " non-zeros from gmm++ format into Storm.");
// Prepare the resulting matrix.
storm::storage::SparseMatrix<T>* result = new storm::storage::SparseMatrix<T>(matrix.nrows(), matrix.ncols());
// Set internal NonZero Counter
result->nonZeroEntryCount = realNonZeros;
result->setState(result->Initialized);
if (!result->prepareInternalStorage(false)) {
LOG4CPLUS_ERROR(logger, "Unable to allocate internal storage while converting GMM++ Matrix to Storm.");
delete result;
return nullptr;
} else {
// Copy Row Indications
std::copy(matrix.jc.begin(), matrix.jc.end(), std::back_inserter(result->rowIndications));
// Copy Columns Indications
std::copy(matrix.ir.begin(), matrix.ir.end(), std::back_inserter(result->columnIndications));
// And do the same thing with the actual values.
std::copy(matrix.pr.begin(), matrix.pr.end(), std::back_inserter(result->valueStorage));
result->currentSize = realNonZeros;
result->lastRow = matrix.nrows() - 1;
}
result->finalize();
LOG4CPLUS_DEBUG(logger, "Done converting matrix to storm format.");
return result;
}
/*!
* Converts a sparse matrix in the gmm++ format to Storm Sparse Matrix format.
* @return A pointer to a row-major sparse matrix in our format.
*/
template<class T>
static storm::storage::SparseMatrix<T>* fromGmmxxSparseMatrix(gmm::csr_matrix<T> && matrix) {
uint_fast64_t realNonZeros = gmm::nnz(matrix);
LOG4CPLUS_DEBUG(logger, "Converting matrix with " << realNonZeros << " non-zeros from gmm++ format into Storm.");
// Prepare the resulting matrix.
storm::storage::SparseMatrix<T>* result = new storm::storage::SparseMatrix<T>(matrix.nrows(), matrix.ncols());
// Set internal NonZero Counter
result->nonZeroEntryCount = realNonZeros;
result->setState(result->Initialized);
// Move Row Indications
result->rowIndications = std::vector<uint_fast64_t>(std::move(matrix.jc));
// Move Columns Indications
result->columnIndications = std::vector<uint_fast64_t>(std::move(matrix.ir));
// And do the same thing with the actual values.
result->valueStorage = std::vector<T>(std::move(matrix.pr));
result->currentSize = realNonZeros;
result->lastRow = matrix.nrows() - 1;
result->finalize();
LOG4CPLUS_DEBUG(logger, "Done converting matrix to storm format.");
return result;
}
};
} //namespace adapters

50
src/counterexamples/MILPMinimalLabelSetGenerator.h

@ -131,7 +131,7 @@ namespace storm {
bool allSuccessorsProblematic = true;
for (auto const& successorEntry : transitionMatrix.getRow(row)) {
// If there is a relevant successor, we need to add the labels of the current choice.
if (stateInformation.relevantStates.get(successorEntry.column()) || psiStates.get(successorEntry.column())) {
if (stateInformation.relevantStates.get(successorEntry.first) || psiStates.get(successorEntry.first)) {
for (auto const& label : choiceLabeling[row]) {
result.allRelevantLabels.insert(label);
}
@ -140,7 +140,7 @@ namespace storm {
result.relevantChoicesForRelevantStates[state].push_back(row);
}
}
if (!stateInformation.problematicStates.get(successorEntry.column())) {
if (!stateInformation.problematicStates.get(successorEntry.first)) {
allSuccessorsProblematic = false;
}
}
@ -304,11 +304,11 @@ namespace storm {
std::list<uint_fast64_t> const& relevantChoicesForState = choiceInformation.relevantChoicesForRelevantStates.at(state);
for (uint_fast64_t row : relevantChoicesForState) {
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(row)) {
if (stateInformation.relevantStates.get(successorEntry.column())) {
if (resultingMap.find(successorEntry.column()) == resultingMap.end()) {
if (stateInformation.relevantStates.get(successorEntry.first)) {
if (resultingMap.find(successorEntry.first) == resultingMap.end()) {
variableNameBuffer.str("");
variableNameBuffer.clear();
variableNameBuffer << "r" << successorEntry.column();
variableNameBuffer << "r" << successorEntry.first;
resultingMap[state] = solver.createContinuousVariable(variableNameBuffer.str(), storm::solver::LpSolver::BOUNDED, 0, 1, 0);
++numberOfVariablesCreated;
}
@ -338,11 +338,11 @@ namespace storm {
std::list<uint_fast64_t> const& relevantChoicesForState = choiceInformation.relevantChoicesForRelevantStates.at(state);
for (uint_fast64_t row : relevantChoicesForState) {
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(row)) {
if (stateInformation.relevantStates.get(successorEntry.column())) {
if (stateInformation.relevantStates.get(successorEntry.first)) {
variableNameBuffer.str("");
variableNameBuffer.clear();
variableNameBuffer << "t" << state << "to" << successorEntry.column();
resultingMap[std::make_pair(state, successorEntry.column())] = solver.createBinaryVariable(variableNameBuffer.str(), 0);
variableNameBuffer << "t" << state << "to" << successorEntry.first;
resultingMap[std::make_pair(state, successorEntry.first)] = solver.createBinaryVariable(variableNameBuffer.str(), 0);
++numberOfVariablesCreated;
}
}
@ -551,11 +551,11 @@ namespace storm {
double rightHandSide = 1;
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(choice)) {
if (stateInformation.relevantStates.get(successorEntry.column())) {
variables.push_back(static_cast<int>(variableInformation.stateToProbabilityVariableIndexMap.at(successorEntry.column())));
coefficients.push_back(-successorEntry.value());
} else if (psiStates.get(successorEntry.column())) {
rightHandSide += successorEntry.value();
if (stateInformation.relevantStates.get(successorEntry.first)) {
variables.push_back(static_cast<int>(variableInformation.stateToProbabilityVariableIndexMap.at(successorEntry.first)));
coefficients.push_back(-successorEntry.second);
} else if (psiStates.get(successorEntry.first)) {
rightHandSide += successorEntry.second;
}
}
@ -609,7 +609,7 @@ namespace storm {
coefficients.push_back(1);
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(problematicChoice)) {
variables.push_back(variableInformation.problematicTransitionToVariableIndexMap.at(std::make_pair(stateListPair.first, successorEntry.column())));
variables.push_back(variableInformation.problematicTransitionToVariableIndexMap.at(std::make_pair(stateListPair.first, successorEntry.first)));
coefficients.push_back(-1);
}
@ -626,9 +626,9 @@ namespace storm {
variables.push_back(variableInformation.problematicStateToVariableIndexMap.at(state));
coefficients.push_back(1);
variables.push_back(variableInformation.problematicStateToVariableIndexMap.at(successorEntry.column()));
variables.push_back(variableInformation.problematicStateToVariableIndexMap.at(successorEntry.first));
coefficients.push_back(-1);
variables.push_back(variableInformation.problematicTransitionToVariableIndexMap.at(std::make_pair(state, successorEntry.column())));
variables.push_back(variableInformation.problematicTransitionToVariableIndexMap.at(std::make_pair(state, successorEntry.first)));
coefficients.push_back(1);
solver.addConstraint("UnproblematicStateReachable" + std::to_string(numberOfConstraintsCreated), variables, coefficients, storm::solver::LpSolver::LESS, 1);
@ -684,7 +684,7 @@ namespace storm {
for (auto choice : choiceInformation.relevantChoicesForRelevantStates.at(state)) {
bool psiStateReachableInOneStep = false;
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(choice)) {
if (psiStates.get(successorEntry.column())) {
if (psiStates.get(successorEntry.first)) {
psiStateReachableInOneStep = true;
}
}
@ -697,8 +697,8 @@ namespace storm {
coefficients.push_back(1);
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(choice)) {
if (state != successorEntry.column() && stateInformation.relevantStates.get(successorEntry.column())) {
std::list<uint_fast64_t> const& successorChoiceVariableIndices = variableInformation.stateToChoiceVariablesIndexMap.at(successorEntry.column());
if (state != successorEntry.first && stateInformation.relevantStates.get(successorEntry.first)) {
std::list<uint_fast64_t> const& successorChoiceVariableIndices = variableInformation.stateToChoiceVariablesIndexMap.at(successorEntry.first);
for (auto choiceVariableIndex : successorChoiceVariableIndices) {
variables.push_back(choiceVariableIndex);
@ -727,8 +727,8 @@ namespace storm {
// Compute the set of predecessors.
std::unordered_set<uint_fast64_t> predecessors;
for (auto const& predecessorEntry : backwardTransitions.getRow(state)) {
if (state != predecessorEntry.column()) {
predecessors.insert(predecessorEntry.column());
if (state != predecessorEntry.first) {
predecessors.insert(predecessorEntry.first);
}
}
@ -744,7 +744,7 @@ namespace storm {
// Check if the current choice targets the current state.
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(relevantChoice)) {
if (state == successorEntry.column()) {
if (state == successorEntry.first) {
choiceTargetsCurrentState = true;
break;
}
@ -789,8 +789,8 @@ namespace storm {
for (auto psiState : psiStates) {
// Compute the set of predecessors.
for (auto const& predecessorEntry : backwardTransitions.getRow(psiState)) {
if (psiState != predecessorEntry.column()) {
predecessors.insert(predecessorEntry.column());
if (psiState != predecessorEntry.first) {
predecessors.insert(predecessorEntry.first);
}
}
}
@ -807,7 +807,7 @@ namespace storm {
// Check if the current choice targets the current state.
for (auto const& successorEntry : labeledMdp.getTransitionMatrix().getRow(relevantChoice)) {
if (psiStates.get(successorEntry.column())) {
if (psiStates.get(successorEntry.first)) {
choiceTargetsPsiState = true;
break;
}

100
src/counterexamples/PathBasedSubsystemGenerator.h

@ -67,33 +67,33 @@ public:
distances[init].second = (T) 1;
}
for(auto& trans : transMat.getRow(init)) {
for(auto const& trans : transMat.getRow(init)) {
//save transition only if it's no 'virtual transition of prob 0 and it doesn't go from init state to init state.
if(trans.value() != (T) 0 && !subSysStates.get(trans.column())) {
if(trans.second != (T) 0 && !subSysStates.get(trans.first)) {
//new state?
if(distances[trans.column()].second == (T) -1) {
distances[trans.column()].first = init;
distances[trans.column()].second = trans.value();
if(distances[trans.first].second == (T) -1) {
distances[trans.first].first = init;
distances[trans.first].second = trans.second;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
}
else if(distances[trans.column()].second < trans.value()){
else if(distances[trans.first].second < trans.second){
//This state has already been discovered
//And the distance can be improved by using this transition.
//find state in set, remove it, reenter it with new and correct values.
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
for(;range.first != range.second; range.first++) {
if(trans.column() == range.first->first) {
if(trans.first == range.first->first) {
activeSet.erase(range.first);
break;
}
}
distances[trans.column()].first = init;
distances[trans.column()].second = trans.value();
distances[trans.first].first = init;
distances[trans.first].second = trans.second;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), trans.value()));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, trans.second));
}
}
}
@ -113,38 +113,38 @@ public:
// Same goes for forbidden states since they may not be used on a path, except as last node.
if(!subSysStates.get(activeState.first) && allowedStates.get(activeState.first)) {
// Look at all neighbors
for(auto& trans : transMat.getRow(activeState.first)) {
for(auto const& trans : transMat.getRow(activeState.first)) {
// Only consider the transition if it's not virtual
if(trans.value() != (T) 0) {
if(trans.second != (T) 0) {
T distance = activeState.second * trans.value();
T distance = activeState.second * trans.second;
//not discovered or initial terminal state
if(distances[trans.column()].second == (T)-1) {
if(distances[trans.first].second == (T)-1) {
//New state discovered -> save it
distances[trans.column()].first = activeState.first;
distances[trans.column()].second = distance;
distances[trans.first].first = activeState.first;
distances[trans.first].second = distance;
// push newly discovered state into activeSet
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distance));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distance));
}
else if(distances[trans.column()].second < distance ){
else if(distances[trans.first].second < distance ){
//This state has already been discovered
//And the distance can be improved by using this transition.
//find state in set, remove it, reenter it with new and correct values.
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
for(;range.first != range.second; range.first++) {
if(trans.column() == range.first->first) {
if(trans.first == range.first->first) {
activeSet.erase(range.first);
break;
}
}
distances[trans.column()].first = activeState.first;
distances[trans.column()].second = distance;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distance));
distances[trans.first].first = activeState.first;
distances[trans.first].second = distance;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distance));
}
}
}
@ -180,35 +180,35 @@ public:
continue;
}
for(auto& trans : transMat.getRow(init)) {
for(auto const& trans : transMat.getRow(init)) {
//save transition only if it's no 'virtual transition of prob 0 and it doesn't go from init state to init state.
if(trans.value() != (T) 0 && !subSysStates.get(trans.column())) {
if(trans.second != (T) 0 && !subSysStates.get(trans.first)) {
//new state?
if(distances[trans.column()].second == (T) -1) {
if(distances[trans.first].second == (T) -1) {
//for initialization of subsys -> subsys search use prob (init -> subsys state -> found state) instead of prob(subsys state -> found state)
distances[trans.column()].first = init;
distances[trans.column()].second = trans.value() * (itDistances[init].second == -1 ? 1 : itDistances[init].second);
distances[trans.first].first = init;
distances[trans.first].second = trans.second * (itDistances[init].second == -1 ? 1 : itDistances[init].second);
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
}
else if(distances[trans.column()].second < trans.value() * itDistances[init].second){
else if(distances[trans.first].second < trans.second * itDistances[init].second){
//This state has already been discovered
//And the distance can be improved by using this transition.
//find state in set, remove it, reenter it with new and correct values.
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
for(;range.first != range.second; range.first++) {
if(trans.column() == range.first->first) {
if(trans.first == range.first->first) {
activeSet.erase(range.first);
break;
}
}
//for initialization of subsys -> subsys search use prob (init -> subsys state -> found state) instead of prob(subsys state -> found state)
distances[trans.column()].first = init;
distances[trans.column()].second = trans.value() * (itDistances[init].second == -1 ? 1 : itDistances[init].second);
distances[trans.first].first = init;
distances[trans.first].second = trans.second * (itDistances[init].second == -1 ? 1 : itDistances[init].second);
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), trans.value()));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, trans.second));
}
}
}
@ -231,38 +231,38 @@ public:
// Same goes for forbidden states since they may not be used on a path, except as last node.
if(!subSysStates.get(activeState.first) && allowedStates.get(activeState.first)) {
// Look at all neighbors
for(auto& trans : transMat.getRow(activeState.first)) {
for(auto const& trans : transMat.getRow(activeState.first)) {
// Only consider the transition if it's not virtual
if(trans.value() != (T) 0) {
if(trans.second != (T) 0) {
T distance = activeState.second * trans.value();
T distance = activeState.second * trans.second;
//not discovered or initial terminal state
if(distances[trans.column()].second == (T)-1) {
if(distances[trans.first].second == (T)-1) {
//New state discovered -> save it
distances[trans.column()].first = activeState.first;
distances[trans.column()].second = distance;
distances[trans.first].first = activeState.first;
distances[trans.first].second = distance;
// push newly discovered state into activeSet
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distance));
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distance));
}
else if(distances[trans.column()].second < distance ){
else if(distances[trans.first].second < distance ){
//This state has already been discovered
//And the distance can be improved by using this transition.
//find state in set, remove it, reenter it with new and correct values.
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.column(), distances[trans.column()].second));
auto range = activeSet.equal_range(std::pair<uint_fast64_t, T>(trans.first, distances[trans.first].second));
for(;range.first != range.second; range.first++) {
if(trans.column() == range.first->first) {
if(trans.first == range.first->first) {
activeSet.erase(range.first);
break;
}
}
distances[trans.column()].first = activeState.first;
distances[trans.column()].second = distance;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.column(), distance));
distances[trans.first].first = activeState.first;
distances[trans.first].second = distance;
activeSet.insert(std::pair<uint_fast64_t, T>(trans.first, distance));
}
}
}

32
src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h

@ -96,10 +96,10 @@ namespace storm {
for (auto state : markovianNonGoalStates) {
for (auto& element : aMarkovian.getRow(rowIndex)) {
ValueType eTerm = std::exp(-exitRates[state] * delta);
if (element.column() == rowIndex) {
element.value() = (storm::utility::constantOne<ValueType>() - eTerm) * element.value() + eTerm;
if (element.first == rowIndex) {
element.second = (storm::utility::constantOne<ValueType>() - eTerm) * element.second + eTerm;
} else {
element.value() = (storm::utility::constantOne<ValueType>() - eTerm) * element.value();
element.second = (storm::utility::constantOne<ValueType>() - eTerm) * element.second;
}
}
++rowIndex;
@ -109,7 +109,7 @@ namespace storm {
rowIndex = 0;
for (auto state : markovianNonGoalStates) {
for (auto element : aMarkovianToProbabilistic.getRow(rowIndex)) {
element.value() = (1 - std::exp(-exitRates[state] * delta)) * element.value();
element.second = (1 - std::exp(-exitRates[state] * delta)) * element.second;
}
++rowIndex;
}
@ -126,8 +126,8 @@ namespace storm {
bMarkovianFixed.push_back(storm::utility::constantZero<ValueType>());
for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) {
if (goalStates.get(element.column())) {
bMarkovianFixed.back() += (1 - std::exp(-exitRates[state] * delta)) * element.value();
if (goalStates.get(element.first)) {
bMarkovianFixed.back() += (1 - std::exp(-exitRates[state] * delta)) * element.second;
}
}
}
@ -313,13 +313,13 @@ namespace storm {
typename storm::storage::SparseMatrix<ValueType>::Rows row = transitionMatrix.getRow(choice);
for (auto element : row) {
if (statesNotContainedInAnyMec.get(element.column())) {
if (statesNotContainedInAnyMec.get(element.first)) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrix.insertNextValue(currentChoice, statesNotInMecsBeforeIndex[element.column()], element.value(), true);
sspMatrix.insertNextValue(currentChoice, statesNotInMecsBeforeIndex[element.first], element.second, true);
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.column()]] += element.value();
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.first]] += element.second;
}
}
@ -350,13 +350,13 @@ namespace storm {
typename storm::storage::SparseMatrix<ValueType>::Rows row = transitionMatrix.getRow(choice);
for (auto element : row) {
if (statesNotContainedInAnyMec.get(element.column())) {
if (statesNotContainedInAnyMec.get(element.first)) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrix.insertNextValue(currentChoice, statesNotInMecsBeforeIndex[element.column()], element.value(), true);
sspMatrix.insertNextValue(currentChoice, statesNotInMecsBeforeIndex[element.first], element.second, true);
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.column()]] += element.value();
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.first]] += element.second;
}
}
@ -456,8 +456,8 @@ namespace storm {
typename storm::storage::SparseMatrix<ValueType>::Rows row = transitionMatrix.getRow(nondeterministicChoiceIndices[state]);
for (auto element : row) {
variables.push_back(stateToVariableIndexMap.at(element.column()));
coefficients.push_back(-element.value());
variables.push_back(stateToVariableIndexMap.at(element.first));
coefficients.push_back(-element.second);
}
variables.push_back(lraValueVariableIndex);
@ -476,8 +476,8 @@ namespace storm {
typename storm::storage::SparseMatrix<ValueType>::Rows row = transitionMatrix.getRow(choice);
for (auto element : row) {
variables.push_back(stateToVariableIndexMap.at(element.column()));
coefficients.push_back(-element.value());
variables.push_back(stateToVariableIndexMap.at(element.first));
coefficients.push_back(-element.second);
}
solver->addConstraint("state" + std::to_string(state), variables, coefficients, min ? storm::solver::LpSolver::LESS_EQUAL : storm::solver::LpSolver::GREATER_EQUAL, storm::utility::constantZero<ValueType>());

2
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h

@ -264,7 +264,9 @@ public:
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
LOG4CPLUS_INFO(logger, "Running Prob01.");
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(this->getModel(), phiStates, psiStates);
LOG4CPLUS_INFO(logger, "Done running Prob01.");
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);

8
src/models/AbstractDeterministicModel.h

@ -90,10 +90,10 @@ class AbstractDeterministicModel: public AbstractModel<T> {
auto rowIt = this->transitionMatrix.begin();
for (uint_fast64_t i = 0; i < this->transitionMatrix.getRowCount(); ++i, ++rowIt) {
typename storm::storage::SparseMatrix<T>::const_rows row = this->transitionMatrix.getRow(i);
for (auto& transition : row) {
if (transition.value() != storm::utility::constantZero<T>()) {
if (subsystem == nullptr || subsystem->get(transition.column())) {
outStream << "\t" << i << " -> " << transition.column() << " [ label= \"" << transition.value() << "\" ];" << std::endl;
for (auto const& transition : row) {
if (transition.second != storm::utility::constantZero<T>()) {
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t" << i << " -> " << transition.first << " [ label= \"" << transition.second << "\" ];" << std::endl;
}
}
}

2
src/models/AbstractModel.h

@ -170,7 +170,7 @@ class AbstractModel: public std::enable_shared_from_this<AbstractModel<T>> {
storm::storage::VectorSet<uint_fast64_t> allTargetBlocks;
for (auto state : block) {
for (auto const& transitionEntry : this->getRows(state)) {
uint_fast64_t targetBlock = stateToBlockMap[transitionEntry.column()];
uint_fast64_t targetBlock = stateToBlockMap[transitionEntry.first];
// We only need to consider transitions that are actually leaving the SCC.
if (targetBlock != currentBlockIndex) {

16
src/models/AbstractNondeterministicModel.h

@ -134,8 +134,8 @@ namespace storm {
for (uint_fast64_t i = 0; i < numberOfStates; ++i) {
typename storm::storage::SparseMatrix<T>::const_rows rows = this->getRows(i);
for (auto const& transition : rows) {
if (transition.value() > 0) {
++rowIndications[transition.column() + 1];
if (transition.second > 0) {
++rowIndications[transition.first + 1];
}
}
}
@ -153,10 +153,10 @@ namespace storm {
// every state. Again, we start by considering all but the last row.
for (uint_fast64_t i = 0; i < numberOfStates; ++i) {
typename storm::storage::SparseMatrix<T>::const_rows rows = this->getRows(i);
for (auto& transition : rows) {
if (transition.value() > 0) {
values[nextIndices[transition.column()]] = transition.value();
columnIndications[nextIndices[transition.column()]++] = i;
for (auto const& transition : rows) {
if (transition.second > 0) {
values[nextIndices[transition.first]] = transition.second;
columnIndications[nextIndices[transition.first]++] = i;
}
}
}
@ -240,8 +240,8 @@ namespace storm {
// Now draw all probabilitic arcs that belong to this nondeterminstic choice.
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.column())) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.column() << " [ label= \"" << transition.value() << "\" ]";
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.first << " [ label= \"" << transition.second << "\" ]";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {

14
src/models/Dtmc.h

@ -169,8 +169,8 @@ public:
std::vector<uint_fast64_t> stateMapping;
for(uint_fast64_t row = 0; row < origMat.getRowCount(); ++row) {
if(subSysStates.get(row)){
for(auto& entry : origMat.getRow(row)) {
if(subSysStates.get(entry.column())) {
for(auto const& entry : origMat.getRow(row)) {
if(subSysStates.get(entry.first)) {
subSysTransitionCount++;
}
}
@ -198,10 +198,10 @@ public:
if(subSysStates.get(row)){
// Transfer transitions
for(auto& entry : origMat.getRow(row)) {
if(subSysStates.get(entry.column())) {
newMat.addNextValue(newRow, stateMapping[entry.column()], entry.value());
if(subSysStates.get(entry.first)) {
newMat.addNextValue(newRow, stateMapping[entry.first], entry.second);
} else {
rest += entry.value();
rest += entry.second;
}
}
@ -253,8 +253,8 @@ public:
if(subSysStates.get(row)){
// Transfer transition rewards
for(auto& entry : this->getTransitionRewardMatrix().getRow(row)) {
if(subSysStates.get(entry.column())) {
newTransRewards.addNextValue(newRow, stateMapping[entry.column()], entry.value());
if(subSysStates.get(entry.first)) {
newTransRewards.addNextValue(newRow, stateMapping[entry.first], entry.second);
}
}

18
src/models/MarkovAutomaton.h

@ -149,7 +149,7 @@ namespace storm {
for (uint_fast64_t row = this->nondeterministicChoiceIndices[state] + (this->isHybridState(state) ? 1 : 0); row < this->nondeterministicChoiceIndices[state + 1]; ++row) {
for (auto const& entry : this->transitionMatrix.getRow(row)) {
newTransitionMatrix.addNextValue(currentChoice, entry.column(), entry.value());
newTransitionMatrix.addNextValue(currentChoice, entry.first, entry.second);
}
++currentChoice;
}
@ -234,9 +234,9 @@ namespace storm {
outStream << ";" << std::endl;
// Now draw all probabilitic arcs that belong to this nondeterminstic choice.
for (auto& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.column())) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.column() << " [ label= \"" << transition.value() << "\" ]";
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t\"" << state << "c" << choice << "\" -> " << transition.first << " [ label= \"" << transition.second << "\" ]";
// If we were given a scheduler to highlight, we do so now.
if (scheduler != nullptr) {
@ -251,9 +251,9 @@ namespace storm {
}
} else {
// In this case we are emitting a Markovian choice, so draw the arrows directly to the target states.
for (auto& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.column())) {
outStream << "\t\"" << state << "\" -> " << transition.column() << " [ label= \"" << transition.value() << " (" << this->exitRates[state] << ")\" ]";
for (auto const& transition : row) {
if (subsystem == nullptr || subsystem->get(transition.first)) {
outStream << "\t\"" << state << "\" -> " << transition.first << " [ label= \"" << transition.second << " (" << this->exitRates[state] << ")\" ]";
}
}
}
@ -272,8 +272,8 @@ namespace storm {
*/
void turnRatesToProbabilities() {
for (auto state : this->markovianStates) {
for (typename storm::storage::SparseMatrix<T>::iterator it = this->transitionMatrix.begin(this->getNondeterministicChoiceIndices()[state]), ite = this->transitionMatrix.begin(this->getNondeterministicChoiceIndices()[state + 1]); it != ite; ++it) {
it.value() /= this->exitRates[state];
for (auto& transition : this->transitionMatrix.getRow(this->getNondeterministicChoiceIndices()[state])) {
transition.second /= this->exitRates[state];
}
}
}

16
src/parser/DeterministicSparseTransitionParser.cpp

@ -226,9 +226,9 @@ storm::storage::SparseMatrix<double> DeterministicSparseTransitionParser(std::st
if ((lastRow != -1) && (!rowHadDiagonalEntry)) {
if (insertDiagonalEntriesIfMissing && !isRewardMatrix) {
resultMatrix.addNextValue(lastRow, lastRow, storm::utility::constantZero<double>());
LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << lastRow << " has no transition to itself. Inserted a 0-transition. (1)");
// LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << lastRow << " has no transition to itself. Inserted a 0-transition. (1)");
} else if (!isRewardMatrix) {
LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << lastRow << " has no transition to itself.");
// LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << lastRow << " has no transition to itself.");
}
// No increment for lastRow
rowHadDiagonalEntry = true;
@ -238,9 +238,9 @@ storm::storage::SparseMatrix<double> DeterministicSparseTransitionParser(std::st
if (fixDeadlocks && !isRewardMatrix) {
resultMatrix.addNextValue(skippedRow, skippedRow, storm::utility::constantOne<double>());
rowHadDiagonalEntry = true;
LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << skippedRow << " has no outgoing transitions. A self-loop was inserted.");
// LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << skippedRow << " has no outgoing transitions. A self-loop was inserted.");
} else if (!isRewardMatrix) {
LOG4CPLUS_ERROR(logger, "Error while parsing " << filename << ": state " << skippedRow << " has no outgoing transitions.");
// LOG4CPLUS_ERROR(logger, "Error while parsing " << filename << ": state " << skippedRow << " has no outgoing transitions.");
// FIXME Why no exception at this point? This will break the App.
}
}
@ -254,9 +254,9 @@ storm::storage::SparseMatrix<double> DeterministicSparseTransitionParser(std::st
rowHadDiagonalEntry = true;
if (insertDiagonalEntriesIfMissing && !isRewardMatrix) {
resultMatrix.addNextValue(row, row, storm::utility::constantZero<double>());
LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << row << " has no transition to itself. Inserted a 0-transition. (2)");
// LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << row << " has no transition to itself. Inserted a 0-transition. (2)");
} else if (!isRewardMatrix) {
LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << row << " has no transition to itself.");
// LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << row << " has no transition to itself.");
}
}
@ -267,9 +267,9 @@ storm::storage::SparseMatrix<double> DeterministicSparseTransitionParser(std::st
if (!rowHadDiagonalEntry) {
if (insertDiagonalEntriesIfMissing && !isRewardMatrix) {
resultMatrix.addNextValue(lastRow, lastRow, storm::utility::constantZero<double>());
LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << lastRow << " has no transition to itself. Inserted a 0-transition. (3)");
// LOG4CPLUS_DEBUG(logger, "While parsing " << filename << ": state " << lastRow << " has no transition to itself. Inserted a 0-transition. (3)");
} else if (!isRewardMatrix) {
LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << lastRow << " has no transition to itself.");
// LOG4CPLUS_WARN(logger, "Warning while parsing " << filename << ": state " << lastRow << " has no transition to itself.");
}
}

14
src/storage/MaximalEndComponentDecomposition.cpp

@ -82,8 +82,8 @@ namespace storm {
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
bool choiceContainedInMEC = true;
for (auto& entry : transitionMatrix.getRow(choice)) {
if (!scc.contains(entry.column())) {
for (auto const& entry : transitionMatrix.getRow(choice)) {
if (!scc.contains(entry.first)) {
choiceContainedInMEC = false;
break;
}
@ -108,9 +108,9 @@ namespace storm {
// Now check which states should be reconsidered, because successors of them were removed.
statesToCheck.clear();
for (auto state : statesToRemove) {
for (auto& entry : transitionMatrix.getRow(state)) {
if (scc.contains(entry.column())) {
statesToCheck.set(entry.column());
for (auto const& entry : transitionMatrix.getRow(state)) {
if (scc.contains(entry.first)) {
statesToCheck.set(entry.first);
}
}
}
@ -144,8 +144,8 @@ namespace storm {
std::vector<uint_fast64_t> containedChoices;
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
bool choiceContained = true;
for (auto& entry : transitionMatrix.getRow(choice)) {
if (!mecStateSet.contains(entry.column())) {
for (auto const& entry : transitionMatrix.getRow(choice)) {
if (!mecStateSet.contains(entry.first)) {
choiceContained = false;
break;
}

106
src/storage/SparseMatrix.cpp

@ -9,47 +9,47 @@ extern log4cplus::Logger logger;
namespace storm {
namespace storage {
template<typename T>
SparseMatrix<T>::rows::rows(std::pair<uint_fast64_t, T>* columnAndValuePtr, uint_fast64_t entryCount) : columnAndValuePtr(columnAndValuePtr), entryCount(entryCount) {
SparseMatrix<T>::rows::rows(iterator begin, uint_fast64_t entryCount) : beginIterator(begin), entryCount(entryCount) {
// Intentionally left empty.
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::rows::begin() {
return columnAndValuePtr;
return beginIterator;
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::rows::end() {
return columnAndValuePtr + entryCount;
return beginIterator + entryCount;
}
template<typename T>
SparseMatrix<T>::const_rows::const_rows(std::pair<uint_fast64_t, T> const* columnAndValuePtr, uint_fast64_t entryCount) : columnAndValuePtr(columnAndValuePtr), entryCount(entryCount) {
SparseMatrix<T>::const_rows::const_rows(const_iterator begin, uint_fast64_t entryCount) : beginIterator(begin), entryCount(entryCount) {
// Intentionally left empty.
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::const_rows::begin() const {
return columnAndValuePtr;
return beginIterator;
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::const_rows::end() const {
return columnAndValuePtr + entryCount;
return beginIterator + entryCount;
}
template<typename T>
SparseMatrix<T>::SparseMatrix(uint_fast64_t rows, uint_fast64_t columns, uint_fast64_t entries) : rowCountSet(rows != 0), rowCount(rows), columnCountSet(columns != 0), columnCount(columns), entryCount(entries), storagePreallocated(rows != 0 && columns != 0 && entries != 0), columnsAndValues(), rowIndications(), internalStatus(UNINITIALIZED), currentEntryCount(0), lastRow(0), lastColumn(0) {
prepareInternalStorage();
}
template<typename T>
SparseMatrix<T>::SparseMatrix(SparseMatrix<T> const& other) : rowCountSet(other.rowCountSet), rowCount(other.rowCount), columnCountSet(other.columnCountSet), columnCount(other.columnCount), entryCount(other.entryCount), storagePreallocated(other.storagePreallocated), columnsAndValues(other.columnsAndValues), rowIndications(other.rowIndications), internalStatus(other.internalStatus), currentEntryCount(other.currentEntryCount), lastRow(other.lastRow), lastColumn(other.lastColumn) {
// Intentionally left empty.
}
template<typename T>
SparseMatrix<T>::SparseMatrix(SparseMatrix<T>&& other) : rowCountSet(other.rowCountSet), rowCount(other.rowCount), columnCountSet(other.columnCountSet), columnCount(other.columnCount), entryCount(other.entryCount), storagePreallocated(other.storagePreallocated), columnsAndValues(std::move(other.columnsAndValues)), rowIndications(std::move(other.rowIndications)), internalStatus(other.internalStatus), currentEntryCount(other.currentEntryCount), lastRow(other.lastRow), lastColumn(other.lastColumn) {
// Now update the source matrix
@ -64,9 +64,9 @@ namespace storm {
other.lastRow = 0;
other.lastColumn = 0;
}
template<typename T>
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t> const& rowIndications, std::vector<std::pair<uint_fast64_t, T>> const& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(values.size()), storagePreallocated(true), columnsAndValues(columnsAndValues), rowIndications(rowIndications), internalStatus(INITIALIZED), currentEntryCount(0), lastRow(0), lastColumn(0) {
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t> const& rowIndications, std::vector<std::pair<uint_fast64_t, T>> const& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(columnsAndValues.size()), storagePreallocated(true), columnsAndValues(columnsAndValues), rowIndications(rowIndications), internalStatus(INITIALIZED), currentEntryCount(0), lastRow(0), lastColumn(0) {
// Intentionally left empty.
}
@ -87,7 +87,7 @@ namespace storm {
}
template<typename T>
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t>&& rowIndications, std::vector<std::pair<uint_fast64_t, T>>&& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(values.size()), storagePreallocated(true), columnsAndValues(std::move(columnsAndValues)), rowIndications(std::move(rowIndications)), internalStatus(INITIALIZED), currentEntryCount(0), lastRow(0), lastColumn(0) {
SparseMatrix<T>::SparseMatrix(uint_fast64_t columnCount, std::vector<uint_fast64_t>&& rowIndications, std::vector<std::pair<uint_fast64_t, T>>&& columnsAndValues) : rowCount(rowIndications.size() - 1), columnCount(columnCount), entryCount(columnsAndValues.size()), storagePreallocated(true), columnsAndValues(std::move(columnsAndValues)), rowIndications(std::move(rowIndications)), internalStatus(INITIALIZED), currentEntryCount(0), lastRow(0), lastColumn(0) {
// Intentionally left empty.
}
@ -198,7 +198,7 @@ namespace storm {
}
}
}
return equalityResult;
}
@ -305,7 +305,7 @@ namespace storm {
columnCount = std::max(columnCount, overridenColumnCount);
}
}
entryCount = currentEntryCount;
internalStatus = INITIALIZED;
}
@ -359,8 +359,8 @@ namespace storm {
throw storm::exceptions::OutOfRangeException() << "Illegal call to SparseMatrix::makeRowAbsorbing: access to row " << row << " is out of bounds.";
}
const_iterator columnValuePtr = columnsAndValues.begin() + rowIndications[row];
const_iterator columnValuePtrEnd = columnsAndValues.begin() + rowIndications[row + 1];
iterator columnValuePtr = this->begin(row);
iterator columnValuePtrEnd = this->end(row);
// If the row has no elements in it, we cannot make it absorbing, because we would need to move all elements
// in the vector of nonzeros otherwise.
@ -373,7 +373,7 @@ namespace storm {
columnValuePtr->first = column;
columnValuePtr->second = storm::utility::constantOne<T>();
++columnValuePtr;
for (; columnValuePtr != columnValuePtr; ++columnValuePtr) {
for (; columnValuePtr != columnValuePtrEnd; ++columnValuePtr) {
columnValuePtr->first = 0;
columnValuePtr->second = storm::utility::constantZero<T>();
}
@ -383,7 +383,7 @@ namespace storm {
T SparseMatrix<T>::getConstrainedRowSum(uint_fast64_t row, storm::storage::BitVector const& constraint) const {
checkReady("getConstrainedRowSum");
T result(0);
for (typename std::vector<std::pair<uint_fast64_t, T>>::const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (constraint.get(it->first)) {
result += it->second;
}
@ -570,7 +570,7 @@ namespace storm {
template <typename T>
SparseMatrix<T> SparseMatrix<T>::transpose() const {
checkReady("transpose");
uint_fast64_t rowCount = this->columnCount;
uint_fast64_t columnCount = this->rowCount;
uint_fast64_t entryCount = this->entryCount;
@ -633,7 +633,7 @@ namespace storm {
T one = storm::utility::constantOne<T>();
bool foundDiagonalElement = false;
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first == row) {
it->second = one - it->second;
foundDiagonalElement = true;
@ -650,7 +650,7 @@ namespace storm {
template<typename T>
void SparseMatrix<T>::negateAllNonDiagonalEntries() {
checkReady("negateAllNonDiagonalEntries");
// Check if the matrix is square, because only then it makes sense to perform this transformation.
if (this->getRowCount() != this->getColumnCount()) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::invertDiagonal: matrix is non-square.";
@ -658,7 +658,7 @@ namespace storm {
// Iterate over all rows and negate all the elements that are not on the diagonal.
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first != row) {
it->second = -it->second;
}
@ -669,7 +669,7 @@ namespace storm {
template<typename T>
void SparseMatrix<T>::deleteDiagonalEntries() {
checkReady("deleteDiagonalEntries");
// Check if the matrix is square, because only then it makes sense to perform this transformation.
if (this->getRowCount() != this->getColumnCount()) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::deleteDiagonalEntries: matrix is non-square.";
@ -677,7 +677,7 @@ namespace storm {
// Iterate over all rows and negate all the elements that are not on the diagonal.
for (uint_fast64_t row = 0; row < rowCount; ++row) {
for (const_iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
for (iterator it = this->begin(row), ite = this->end(row); it != ite; ++it) {
if (it->first == row) {
it->second = storm::utility::constantZero<T>();
}
@ -688,7 +688,7 @@ namespace storm {
template<typename T>
typename std::pair<storm::storage::SparseMatrix<T>, storm::storage::SparseMatrix<T>> SparseMatrix<T>::getJacobiDecomposition() const {
checkReady("getJacobiDecomposition");
if (rowCount != columnCount) {
throw storm::exceptions::InvalidArgumentException() << "Illegal call to SparseMatrix::invertDiagonal: matrix is non-square.";
}
@ -720,7 +720,7 @@ namespace storm {
template<typename T>
std::vector<T> SparseMatrix<T>::getPointwiseProductRowSumVector(storm::storage::SparseMatrix<T> const& otherMatrix) const {
checkReady("getPointwiseProductRowSumVector");
std::vector<T> result(rowCount, storm::utility::constantZero<T>());
// Iterate over all elements of the current matrix and either continue with the next element in case the
@ -770,7 +770,7 @@ namespace storm {
template<typename T>
uint_fast64_t SparseMatrix<T>::getSizeInMemory() const {
checkReady("getSizeInMemory");
uint_fast64_t size = sizeof(*this);
// Add size of columns and values.
@ -785,63 +785,63 @@ namespace storm {
template<typename T>
typename SparseMatrix<T>::const_rows SparseMatrix<T>::getRows(uint_fast64_t startRow, uint_fast64_t endRow) const {
checkReady("getRows");
return const_rows(this->valueStorage.data() + this->rowIndications[startRow], this->columnIndications.data() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
return const_rows(this->columnsAndValues.data() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
}
template<typename T>
typename SparseMatrix<T>::rows SparseMatrix<T>::getRows(uint_fast64_t startRow, uint_fast64_t endRow) {
checkReady("getRows");
return rows(this->valueStorage.data() + this->rowIndications[startRow], this->columnIndications.data() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
return rows(this->columnsAndValues.data() + this->rowIndications[startRow], this->rowIndications[endRow + 1] - this->rowIndications[startRow]);
}
template<typename T>
typename SparseMatrix<T>::const_rows SparseMatrix<T>::getRow(uint_fast64_t row) const {
checkReady("getRow");
return getRows(row, row);
}
template<typename T>
typename SparseMatrix<T>::rows SparseMatrix<T>::getRow(uint_fast64_t row) {
checkReady("getRow");
return getRows(row, row);
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::begin(uint_fast64_t row) const {
checkReady("begin");
return this->columnsAndValues.begin() + this->rowIndications[row];
return this->columnsAndValues.data() + this->rowIndications[row];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::begin(uint_fast64_t row) {
checkReady("begin");
return this->columnsAndValues.begin() + this->rowIndications[row];
return this->columnsAndValues.data() + this->rowIndications[row];
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::end(uint_fast64_t row) const {
checkReady("end");
return this->columnsAndValues.begin() + this->rowIndications[row + 1];
return this->columnsAndValues.data() + this->rowIndications[row + 1];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::end(uint_fast64_t row) {
checkReady("end");
return this->columnsAndValues.begin() + this->rowIndications[row + 1];
return this->columnsAndValues.data() + this->rowIndications[row + 1];
}
template<typename T>
typename SparseMatrix<T>::const_iterator SparseMatrix<T>::end() const {
checkReady("end");
return this->columnsAndValues.begin() + this->rowIndications[rowCount];
return this->columnsAndValues.data() + this->rowIndications[rowCount];
}
template<typename T>
typename SparseMatrix<T>::iterator SparseMatrix<T>::end() {
checkReady("end");
return this->columnsAndValues.begin() + this->rowIndications[rowCount];
return this->columnsAndValues.data() + this->rowIndications[rowCount];
}
template<typename T>
T SparseMatrix<T>::getRowSum(uint_fast64_t row) const {
checkReady("getRowSum");
@ -853,22 +853,21 @@ namespace storm {
}
template<typename T>
bool SparseMatrix<T>::isSubmatrixOf(SparseMatrix<T> const& matrix) const {
bool SparseMatrix<T>::isSubmatrixOf(SparseMatrix<T> const& matrix) const {
checkReady("isSubmatrixOf");
// Check for matching sizes.
if (this->getRowCount() != matrix.getRowCount()) return false;
if (this->getColumnCount() != matrix.getColumnCount()) return false;
// Check the subset property for all rows individually.
for (uint_fast64_t row = 0; row < this->getRowCount(); ++row) {
for (const_iterator it1 = this->begin(row), ite1 = this->end(row), it2 = matrix.begin(row), ite2 = matrix.end(row); it1 != ite1; ++it1) {
for (uint_fast64_t elem = rowIndications[row], elem2 = matrix.rowIndications[row]; elem < rowIndications[row + 1]; ++elem) {
for (const_iterator it1 = this->begin(row), ite1 = this->end(row), it2 = matrix.begin(row), ite2 = matrix.end(row); it1 != ite1; ++it1) {
// Skip over all entries of the other matrix that are before the current entry in the current matrix.
while (it2->first != ite2 && it2->first < it1->first) {
while (it2 != ite2 && it2->first < it1->first) {
++it2;
}
if (it2->first == ite2 || it1->first != it2->first) {
if (it2 == ite2 || it1->first != it2->first) {
return false;
}
}
@ -879,7 +878,7 @@ namespace storm {
template<typename T>
std::ostream& operator<<(std::ostream& out, SparseMatrix<T> const& matrix) {
matrix.checkReady("operator<<");
// Print column numbers in header.
out << "\t\t";
for (uint_fast64_t i = 0; i < matrix.columnCount; ++i) {
@ -934,8 +933,7 @@ namespace storm {
void SparseMatrix<T>::prepareInternalStorage() {
// Only allocate the memory if the dimensions of the matrix are already known.
if (storagePreallocated) {
valueStorage = std::vector<T>(entryCount, storm::utility::constantZero<T>());
columnIndications = std::vector<uint_fast64_t>(entryCount, 0);
columnsAndValues = std::vector<std::pair<uint_fast64_t, T>>(entryCount, std::make_pair(0, storm::utility::constantZero<T>()));
rowIndications = std::vector<uint_fast64_t>(rowCount + 1, 0);
} else {
rowIndications.push_back(0);
@ -950,12 +948,8 @@ namespace storm {
}
// Explicitly instantiate the matrix and the nested classes.
template class SparseMatrix<double>::BaseIterator<double const>;
template class SparseMatrix<double>::BaseIterator<double>;
template class SparseMatrix<double>;
template std::ostream& operator<<(std::ostream& out, SparseMatrix<double> const& matrix);
template class SparseMatrix<int>::BaseIterator<int const>;
template class SparseMatrix<int>::BaseIterator<int>;
template class SparseMatrix<int>;
template std::ostream& operator<<(std::ostream& out, SparseMatrix<int> const& matrix);

20
src/storage/SparseMatrix.h

@ -68,8 +68,8 @@ namespace storm {
friend class tbbHelper_MatrixRowVectorScalarProduct;
#endif
typedef typename std::vector<std::pair<uint_fast64_t, T>>::iterator iterator;
typedef typename std::vector<std::pair<uint_fast64_t, T>>::const_iterator const_iterator;
typedef std::pair<uint_fast64_t, T>* iterator;
typedef std::pair<uint_fast64_t, T> const* const_iterator;
/*!
* This class represents a number of consecutive rows of the matrix.
@ -80,10 +80,10 @@ namespace storm {
* Constructs an object that represents the rows defined by the value of the first entry, the column
* of the first entry and the number of entries in this row set.
*
* @param columnAndValuePtr A pointer to the columnd and value of the first entry of the rows.
* @param begin An iterator that points to the beginning of the row.
* @param entryCount The number of entrys in the rows.
*/
rows(std::pair<uint_fast64_t, T>* columnAndValuePtr, uint_fast64_t entryCount);
rows(iterator begin, uint_fast64_t entryCount);
/*!
* Retrieves an iterator that points to the beginning of the rows.
@ -101,7 +101,7 @@ namespace storm {
private:
// The pointer to the columnd and value of the first entry.
std::pair<uint_fast64_t, T>* columnAndValuePtr;
iterator beginIterator;
// The number of non-zero entries in the rows.
uint_fast64_t entryCount;
@ -116,10 +116,10 @@ namespace storm {
* Constructs an object that represents the rows defined by the value of the first entry, the column
* of the first entry and the number of entries in this row set.
*
* @param columnAndValuePtr A pointer to the columnd and value of the first entry of the rows.
* @param begin An iterator that points to the beginning of the row.
* @param entryCount The number of entrys in the rows.
*/
const_rows(std::pair<uint_fast64_t, T> const* columnAndValuePtr, uint_fast64_t entryCount);
const_rows(const_iterator begin, uint_fast64_t entryCount);
/*!
* Retrieves an iterator that points to the beginning of the rows.
@ -137,7 +137,7 @@ namespace storm {
private:
// The pointer to the columnd and value of the first entry.
std::pair<uint_fast64_t, T> const* columnAndValuePtr;
const_iterator beginIterator;
// The number of non-zero entries in the rows.
uint_fast64_t entryCount;
@ -507,7 +507,7 @@ namespace storm {
* @param row The row past the end of which the iterator has to point.
* @return An iterator that points past the end of the given row.
*/
const_iterator end(uint_fast64_t row = 0) const;
const_iterator end(uint_fast64_t row) const;
/*!
* Retrieves an iterator that points past the end of the given row.
@ -515,7 +515,7 @@ namespace storm {
* @param row The row past the end of which the iterator has to point.
* @return An iterator that points past the end of the given row.
*/
iterator end(uint_fast64_t row = 0);
iterator end(uint_fast64_t row);
/*!
* Retrieves an iterator that points past the end of the last row of the matrix.

20
src/storage/StronglyConnectedComponentDecomposition.cpp

@ -127,40 +127,40 @@ namespace storm {
// Now, traverse all successors of the current state.
for(; successorIt != model.getRows(currentState).end(); ++successorIt) {
// Record if the current state has a self-loop if we are to drop naive SCCs later.
if (dropNaiveSccs && currentState == successorIt.column()) {
if (dropNaiveSccs && currentState == successorIt->first) {
statesWithSelfloop.set(currentState, true);
}
// If we have not visited the successor already, we need to perform the procedure
// recursively on the newly found state, but only if it belongs to the subsystem in
// which we are interested.
if (subsystem.get(successorIt.column())) {
if (!visitedStates.get(successorIt.column())) {
if (subsystem.get(successorIt->first)) {
if (!visitedStates.get(successorIt->first)) {
// Save current iterator position so we can continue where we left off later.
recursionIteratorStack.pop_back();
recursionIteratorStack.push_back(successorIt);
// Put unvisited successor on top of our recursion stack and remember that.
recursionStateStack.push_back(successorIt.column());
statesInStack[successorIt.column()] = true;
recursionStateStack.push_back(successorIt->first);
statesInStack[successorIt->first] = true;
// Also, put initial value for iterator on corresponding recursion stack.
recursionIteratorStack.push_back(model.getRows(successorIt.column()).begin());
recursionIteratorStack.push_back(model.getRows(successorIt->first).begin());
// Perform the actual recursion step in an iterative way.
goto recursionStepForward;
recursionStepBackward:
lowlinks[currentState] = std::min(lowlinks[currentState], lowlinks[successorIt.column()]);
lowlinks[currentState] = std::min(lowlinks[currentState], lowlinks[successorIt->first]);
// If we are interested in bottom SCCs only, we need to check whether the current state
// can leave the SCC.
if (onlyBottomSccs && lowlinks[currentState] != lowlinks[successorIt.column()]) {
if (onlyBottomSccs && lowlinks[currentState] != lowlinks[successorIt->first]) {
statesThatCanLeaveTheirScc.set(currentState);
}
} else if (tarjanStackStates.get(successorIt.column())) {
} else if (tarjanStackStates.get(successorIt->first)) {
// Update the lowlink of the current state.
lowlinks[currentState] = std::min(lowlinks[currentState], stateIndices[successorIt.column()]);
lowlinks[currentState] = std::min(lowlinks[currentState], stateIndices[successorIt->first]);
// Since it is known that in this case, the successor state is in the same SCC as the current state
// we don't need to update the bit vector of states that can leave their SCC.

10
src/utility/counterexamples.h

@ -35,8 +35,8 @@ namespace storm {
for (auto state : psiStates) {
analysisInformation[state] = std::set<uint_fast64_t>();
for (auto& predecessorEntry : backwardTransitions.getRow(state)) {
if (predecessorEntry.column() != state) {
worklist.push(std::make_pair(predecessorEntry.column(), state));
if (predecessorEntry.first != state) {
worklist.push(std::make_pair(predecessorEntry.first, state));
}
}
}
@ -57,7 +57,7 @@ namespace storm {
bool choiceTargetsTargetState = false;
for (auto& entry : transitionMatrix.getRow(currentChoice)) {
if (entry.column() == targetState) {
if (entry.first == targetState) {
choiceTargetsTargetState = true;
break;
}
@ -78,8 +78,8 @@ namespace storm {
if (analysisInformation[currentState].size() != analysisInformationSizeBefore) {
for (auto& predecessorEntry : backwardTransitions.getRow(currentState)) {
// Only put the predecessor in the worklist if it's not already a target state.
if (!psiStates.get(predecessorEntry.column())) {
worklist.push(std::make_pair(predecessorEntry.column(), currentState));
if (!psiStates.get(predecessorEntry.first)) {
worklist.push(std::make_pair(predecessorEntry.first, currentState));
}
}
}

98
src/utility/graph.h

@ -81,17 +81,17 @@ namespace storm {
stepStack.pop_back();
}
for (auto& entry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(entry.column()) && (!statesWithProbabilityGreater0.get(entry.column()) || (useStepBound && remainingSteps[entry.column()] < currentStepBound - 1))) {
for (typename storm::storage::SparseMatrix<T>::const_iterator entryIt = backwardTransitions.begin(currentState), entryIte = backwardTransitions.end(currentState); entryIt != entryIte; ++entryIt) {
if (phiStates.get(entryIt->first) && (!statesWithProbabilityGreater0.get(entryIt->first) || (useStepBound && remainingSteps[entryIt->first] < currentStepBound - 1))) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(entry.column(), true);
stack.push_back(entry.column());
statesWithProbabilityGreater0.set(entryIt->first, true);
stack.push_back(entryIt->first);
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[entry.column()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entry.column(), true);
stack.push_back(entry.column());
remainingSteps[entryIt->first] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entryIt->first, true);
stack.push_back(entryIt->first);
stepStack.push_back(currentStepBound - 1);
}
}
@ -212,17 +212,17 @@ namespace storm {
stepStack.pop_back();
}
for (auto& entry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(entry.column()) && (!statesWithProbabilityGreater0.get(entry.column()) || (useStepBound && remainingSteps[entry.column()] < currentStepBound - 1))) {
for (auto const& entry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(entry.first) && (!statesWithProbabilityGreater0.get(entry.first) || (useStepBound && remainingSteps[entry.first] < currentStepBound - 1))) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(entry.column(), true);
stack.push_back(entry.column());
statesWithProbabilityGreater0.set(entry.first, true);
stack.push_back(entry.first);
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[entry.column()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entry.column(), true);
stack.push_back(entry.column());
remainingSteps[entry.first] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entry.first, true);
stack.push_back(entry.first);
stepStack.push_back(currentStepBound - 1);
}
}
@ -291,14 +291,14 @@ namespace storm {
currentState = stack.back();
stack.pop_back();
for (auto& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.column()) && !nextStates.get(predecessorEntry.column())) {
for (auto const& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.first) && !nextStates.get(predecessorEntry.first)) {
// Check whether the predecessor has only successors in the current state set for one of the
// nondeterminstic choices.
for (auto row = nondeterministicChoiceIndices[predecessorEntry.column()]; row < nondeterministicChoiceIndices[predecessorEntry.column() + 1]; ++row) {
for (auto row = nondeterministicChoiceIndices[predecessorEntry.first]; row < nondeterministicChoiceIndices[predecessorEntry.first + 1]; ++row) {
bool allSuccessorsInCurrentStates = true;
for (auto& targetEntry : transitionMatrix.getRow(row)) {
if (!currentStates.get(targetEntry.column())) {
for (auto const& targetEntry : transitionMatrix.getRow(row)) {
if (!currentStates.get(targetEntry.first)) {
allSuccessorsInCurrentStates = false;
break;
}
@ -308,8 +308,8 @@ namespace storm {
// add it to the set of states for the next iteration and perform a backward search from
// that state.
if (allSuccessorsInCurrentStates) {
nextStates.set(predecessorEntry.column(), true);
stack.push_back(predecessorEntry.column());
nextStates.set(predecessorEntry.first, true);
stack.push_back(predecessorEntry.first);
break;
}
}
@ -402,15 +402,15 @@ namespace storm {
stepStack.pop_back();
}
for(auto& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.column()) && (!statesWithProbabilityGreater0.get(predecessorEntry.column()) || (useStepBound && remainingSteps[predecessorEntry.column()] < currentStepBound - 1))) {
for(auto const& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.first) && (!statesWithProbabilityGreater0.get(predecessorEntry.first) || (useStepBound && remainingSteps[predecessorEntry.first] < currentStepBound - 1))) {
// Check whether the predecessor has at least one successor in the current state set for every
// nondeterministic choice.
bool addToStatesWithProbabilityGreater0 = true;
for (auto row = nondeterministicChoiceIndices[predecessorEntry.column()]; row < nondeterministicChoiceIndices[predecessorEntry.column() + 1]; ++row) {
for (auto row = nondeterministicChoiceIndices[predecessorEntry.first]; row < nondeterministicChoiceIndices[predecessorEntry.first + 1]; ++row) {
bool hasAtLeastOneSuccessorWithProbabilityGreater0 = false;
for (auto& successorEntry : transitionMatrix.getRow(row)) {
if (statesWithProbabilityGreater0.get(successorEntry.column())) {
for (auto const& successorEntry : transitionMatrix.getRow(row)) {
if (statesWithProbabilityGreater0.get(successorEntry.first)) {
hasAtLeastOneSuccessorWithProbabilityGreater0 = true;
break;
}
@ -426,13 +426,13 @@ namespace storm {
if (addToStatesWithProbabilityGreater0) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(predecessorEntry.column(), true);
stack.push_back(predecessorEntry.column());
statesWithProbabilityGreater0.set(predecessorEntry.first, true);
stack.push_back(predecessorEntry.first);
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[predecessorEntry.column()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(predecessorEntry.column(), true);
stack.push_back(predecessorEntry.column());
remainingSteps[predecessorEntry.first] = currentStepBound - 1;
statesWithProbabilityGreater0.set(predecessorEntry.first, true);
stack.push_back(predecessorEntry.first);
stepStack.push_back(currentStepBound - 1);
}
}
@ -502,13 +502,13 @@ namespace storm {
currentState = stack.back();
stack.pop_back();
for(auto& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.column()) && !nextStates.get(predecessorEntry.column())) {
for(auto const& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (phiStates.get(predecessorEntry.first) && !nextStates.get(predecessorEntry.first)) {
// Check whether the predecessor has only successors in the current state set for all of the
// nondeterminstic choices.
bool allSuccessorsInCurrentStatesForAllChoices = true;
for (auto& successorEntry : transitionMatrix.getRows(nondeterministicChoiceIndices[predecessorEntry.column()], nondeterministicChoiceIndices[predecessorEntry.column() + 1] - 1)) {
if (!currentStates.get(successorEntry.column())) {
for (auto const& successorEntry : transitionMatrix.getRows(nondeterministicChoiceIndices[predecessorEntry.first], nondeterministicChoiceIndices[predecessorEntry.first + 1] - 1)) {
if (!currentStates.get(successorEntry.first)) {
allSuccessorsInCurrentStatesForAllChoices = false;
goto afterCheckLoop;
}
@ -519,8 +519,8 @@ namespace storm {
// add it to the set of states for the next iteration and perform a backward search from
// that state.
if (allSuccessorsInCurrentStatesForAllChoices) {
nextStates.set(predecessorEntry.column(), true);
stack.push_back(predecessorEntry.column());
nextStates.set(predecessorEntry.first, true);
stack.push_back(predecessorEntry.first);
}
}
}
@ -600,12 +600,12 @@ namespace storm {
recursionStepBackward:
for (; successorIterator != matrix.end(currentState); ++successorIterator) {
if (!visitedStates.get(successorIterator.column())) {
if (!visitedStates.get(successorIterator.first)) {
// Put unvisited successor on top of our recursion stack and remember that.
recursionStack.push_back(successorIterator.column());
recursionStack.push_back(successorIterator.first);
// Also, put initial value for iterator on corresponding recursion stack.
iteratorRecursionStack.push_back(matrix.begin(successorIterator.column()));
iteratorRecursionStack.push_back(matrix.begin(successorIterator.first));
goto recursionStepForward;
}
@ -684,23 +684,23 @@ namespace storm {
// Now check the new distances for all successors of the current state.
typename storm::storage::SparseMatrix<T>::Rows row = transitions.getRow(probabilityStatePair.second);
for (auto& transition : row) {
for (auto const& transition : row) {
// Only follow the transition if it lies within the filtered states.
if (filterStates != nullptr && filterStates->get(transition.column())) {
if (filterStates != nullptr && filterStates->get(transition.first)) {
// Calculate the distance we achieve when we take the path to the successor via the current state.
T newDistance = probabilityStatePair.first * transition.value();
T newDistance = probabilityStatePair.first * transition.second;
// We found a cheaper way to get to the target state of the transition.
if (newDistance > probabilities[transition.column()]) {
if (newDistance > probabilities[transition.first]) {
// Remove the old distance.
if (probabilities[transition.column()] != noPredecessorValue) {
probabilityStateSet.erase(std::make_pair(probabilities[transition.column()], transition.column()));
if (probabilities[transition.first] != noPredecessorValue) {
probabilityStateSet.erase(std::make_pair(probabilities[transition.first], transition.first));
}
// Set and add the new distance.
probabilities[transition.column()] = newDistance;
predecessors[transition.column()] = probabilityStatePair.second;
probabilityStateSet.insert(std::make_pair(newDistance, transition.column()));
probabilities[transition.first] = newDistance;
predecessors[transition.first] = probabilityStatePair.second;
probabilityStateSet.insert(std::make_pair(newDistance, transition.first));
}
}
}

4
src/utility/matrix.h

@ -32,8 +32,8 @@ namespace storm {
// If a valid choice for this state is defined, we copy over the corresponding entries.
typename storm::storage::SparseMatrix<T>::const_rows selectedRow = transitionMatrix.getRow(choice);
for (auto entry : selectedRow) {
result.addNextValue(state, entry.column(), entry.value());
for (auto const& entry : selectedRow) {
result.addNextValue(state, entry.first, entry.second);
}
} else {
// If no valid choice for the state is defined, we insert a self-loop.

24
test/functional/storage/SparseMatrixTest.cpp

@ -494,24 +494,24 @@ TEST(SparseMatrix, Iteration) {
ASSERT_NO_THROW(matrix.finalize());
for (auto const& entry : matrix.getRow(4)) {
if (entry.column() == 0) {
ASSERT_EQ(0.1, entry.value());
} else if (entry.column() == 1) {
ASSERT_EQ(0.2, entry.value());
} else if (entry.column() == 3) {
ASSERT_EQ(0.3, entry.value());
if (entry.first == 0) {
ASSERT_EQ(0.1, entry.second);
} else if (entry.first == 1) {
ASSERT_EQ(0.2, entry.second);
} else if (entry.first == 3) {
ASSERT_EQ(0.3, entry.second);
} else {
ASSERT_TRUE(false);
}
}
for (storm::storage::SparseMatrix<double>::iterator it = matrix.begin(4), ite = matrix.end(4); it != ite; ++it) {
if (it.column() == 0) {
ASSERT_EQ(0.1, it.value());
} else if (it.column() == 1) {
ASSERT_EQ(0.2, it.value());
} else if (it.column() == 3) {
ASSERT_EQ(0.3, it.value());
if (it->first == 0) {
ASSERT_EQ(0.1, it->second);
} else if (it->first == 1) {
ASSERT_EQ(0.2, it->second);
} else if (it->first == 3) {
ASSERT_EQ(0.3, it->second);
} else {
ASSERT_TRUE(false);
}

2
test/performance/graph/GraphTest.cpp

@ -21,7 +21,7 @@ TEST(GraphTest, PerformProb01) {
ASSERT_EQ(prob01.first.getNumberOfSetBits(), 574016ull);
ASSERT_EQ(prob01.second.getNumberOfSetBits(), 825797ull);
prob01 = storm::utility::graph::performProb01(*dtmc, trueStates, storm::storage::BitVector(dtmc->getLabeledStates("observeOnlyTrueSender")));
ASSERT_EQ(prob01.first.getNumberOfSetBits(), 1785309ull);

1
test/performance/modelchecker/GmmxxDtmcPrctModelCheckerTest.cpp

@ -67,6 +67,7 @@ TEST(GmmxxDtmcPrctlModelCheckerTest, SynchronousLeader) {
ASSERT_EQ(parser.getType(), storm::models::DTMC);
std::shared_ptr<storm::models::Dtmc<double>> dtmc = parser.getModel<storm::models::Dtmc<double>>();
ASSERT_EQ(dtmc->getNumberOfStates(), 1312334ull);

2
test/performance/storage/SparseMatrixTest.cpp

@ -13,7 +13,7 @@ TEST(SparseMatrix, Iteration) {
for (uint_fast64_t row = 0; row < matrix.getRowCount(); ++row) {
for (auto const& entry : matrix.getRow(row)) {
// The following can never be true, but prevents the compiler from optimizing away the loop.
if (entry.column() > matrix.getColumnCount()) {
if (entry.first > matrix.getColumnCount()) {
ASSERT_TRUE(false);
}
}
Loading…
Cancel
Save