@ -44,16 +44,19 @@ namespace storm {
}
}
// Incorporate the required memory into the state space
storm : : storage : : SparseModelMemoryProduct < ValueType > product = data . memory - > product ( originalModel ) ;
std : : shared_ptr < SparseModelType > preprocessedModel = std : : dynamic_pointer_cast < SparseModelType > ( product . build ( ) ) ;
auto backwardTransitions = preprocessedModel - > getBackwardTransitions ( ) ;
// compute the end components of the model (if required)
bool endComponentAnalysisRequired = false ;
for ( auto & task : data . tasks ) {
endComponentAnalysisRequired = endComponentAnalysisRequired | | task - > requiresEndComponentAnalysis ( ) ;
}
if ( endComponentAnalysisRequired ) {
// TODO
STORM_LOG_THROW ( false , storm : : exceptions : : NotImplementedException , " End component analysis required but currently not implemented. " ) ;
}
@ -61,41 +64,8 @@ namespace storm {
task - > perform ( * preprocessedModel ) ;
}
ReturnType result ( originalFormula , originalModel ) ;
for ( auto & obj : data . objectives ) {
result . objectives . push_back ( std : : move ( * obj ) ) ;
}
result . preprocessedModel = std : : move ( preprocessedModel ) ;
result . queryType = ReturnType : : QueryType : : Achievability ;
auto minMaxNonZeroRewardStates = getStatesWithNonZeroRewardMinMax ( result , backwardTransitions ) ;
auto finiteRewardStates = ensureRewardFiniteness ( result , data . finiteRewardCheckObjectives , minMaxNonZeroRewardStates . first , backwardTransitions ) ;
std : : set < std : : string > relevantRewardModels ;
for ( auto const & obj : result . objectives ) {
relevantRewardModels . insert ( * obj . rewardModelName ) ;
}
// Build a subsystem that discards states that yield infinite reward for all schedulers.
// We can also merge the states that will have reward zero anyway.
storm : : storage : : BitVector zeroRewardStates = ~ minMaxNonZeroRewardStates . second ;
storm : : transformer : : GoalStateMerger < SparseModelType > merger ( * result . preprocessedModel ) ;
typename storm : : transformer : : GoalStateMerger < SparseModelType > : : ReturnType mergerResult = merger . mergeTargetAndSinkStates ( finiteRewardStates , zeroRewardStates , storm : : storage : : BitVector ( finiteRewardStates . size ( ) , false ) , std : : vector < std : : string > ( relevantRewardModels . begin ( ) , relevantRewardModels . end ( ) ) ) ;
result . preprocessedModel = mergerResult . model ;
result . possibleBottomStates = ( ~ minMaxNonZeroRewardStates . first ) % finiteRewardStates ;
if ( mergerResult . targetState ) {
storm : : storage : : BitVector targetStateAsVector ( result . preprocessedModel - > getNumberOfStates ( ) , false ) ;
targetStateAsVector . set ( * mergerResult . targetState , true ) ;
result . possibleECChoices = storm : : utility : : graph : : performProb0E ( * result . preprocessedModel , result . preprocessedModel - > getBackwardTransitions ( ) , storm : : storage : : BitVector ( targetStateAsVector . size ( ) , true ) , targetStateAsVector ) ;
result . possibleECChoices . set ( result . preprocessedModel - > getTransitionMatrix ( ) . getRowGroupIndices ( ) [ * mergerResult . targetState ] , true ) ;
// There is an additional state in the result
result . possibleBottomStates . resize ( result . possibleBottomStates . size ( ) + 1 , true ) ;
}
assert ( result . possibleBottomStates . size ( ) = = result . preprocessedModel - > getNumberOfStates ( ) ) ;
return result ;
// Build the actual result
return buildResult ( originalModel , originalFormula , data , preprocessedModel , backwardTransitions ) ;
}
template < typename SparseModelType >
@ -139,8 +109,6 @@ namespace storm {
break ;
}
}
}
template < typename SparseModelType >
@ -189,6 +157,10 @@ namespace storm {
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessProbabilityOperatorFormula ( storm : : logic : : ProbabilityOperatorFormula const & formula , PreprocessorData & data ) {
// Probabilities are between zero and one
data . objectives . back ( ) - > lowerResultBound = storm : : utility : : zero < ValueType > ( ) ;
data . objectives . back ( ) - > upperResultBound = storm : : utility : : one < ValueType > ( ) ;
if ( formula . getSubformula ( ) . isUntilFormula ( ) ) {
preprocessUntilFormula ( formula . getSubformula ( ) . asUntilFormula ( ) , data ) ;
} else if ( formula . getSubformula ( ) . isBoundedUntilFormula ( ) ) {
@ -217,6 +189,8 @@ namespace storm {
rewardModelName = data . originalModel . getRewardModels ( ) . begin ( ) - > first ;
}
data . objectives . back ( ) - > lowerResultBound = storm : : utility : : zero < ValueType > ( ) ;
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessEventuallyFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data , rewardModelName ) ;
} else if ( formula . getSubformula ( ) . isCumulativeRewardFormula ( ) ) {
@ -233,6 +207,8 @@ namespace storm {
// Time formulas are only supported for Markov automata
STORM_LOG_THROW ( data . originalModel . isOfType ( storm : : models : : ModelType : : MarkovAutomaton ) , storm : : exceptions : : InvalidPropertyException , " Time operator formulas are only supported for Markov automata. " ) ;
data . objectives . back ( ) - > lowerResultBound = storm : : utility : : zero < ValueType > ( ) ;
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessEventuallyFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data ) ;
} else {
@ -344,6 +320,8 @@ namespace storm {
data . objectives . back ( ) - > upperTimeBound = storm : : logic : : TimeBound ( formula . isBoundStrict ( ) , formula . getBound ( ) ) ;
}
assert ( optionalRewardModelName . is_initialized ( ) ) ;
data . objectives . back ( ) - > rewardModelName = * optionalRewardModelName ;
}
@ -354,6 +332,68 @@ namespace storm {
data . finiteRewardCheckObjectives . set ( data . objectives . size ( ) - 1 , true ) ;
}
template < typename SparseModelType >
typename SparseMultiObjectivePreprocessor < SparseModelType > : : ReturnType SparseMultiObjectivePreprocessor < SparseModelType > : : buildResult ( SparseModelType const & originalModel , storm : : logic : : MultiObjectiveFormula const & originalFormula , PreprocessorData & data , std : : shared_ptr < SparseModelType > const & preprocessedModel , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions ) {
ReturnType result ( originalFormula , originalModel ) ;
result . preprocessedModel = preprocessedModel ;
for ( auto & obj : data . objectives ) {
result . objectives . push_back ( std : : move ( * obj ) ) ;
}
result . queryType = getQueryType ( result . objectives ) ;
auto minMaxNonZeroRewardStates = getStatesWithNonZeroRewardMinMax ( result , backwardTransitions ) ;
auto finiteRewardStates = ensureRewardFiniteness ( result , data . finiteRewardCheckObjectives , minMaxNonZeroRewardStates . first , backwardTransitions ) ;
std : : set < std : : string > relevantRewardModels ;
for ( auto const & obj : result . objectives ) {
relevantRewardModels . insert ( * obj . rewardModelName ) ;
}
// Build a subsystem that discards states that yield infinite reward for all schedulers.
// We can also merge the states that will have reward zero anyway.
storm : : storage : : BitVector zeroRewardStates = ~ minMaxNonZeroRewardStates . second ;
storm : : storage : : BitVector maybeStates = finiteRewardStates & ~ zeroRewardStates ;
storm : : transformer : : GoalStateMerger < SparseModelType > merger ( * result . preprocessedModel ) ;
typename storm : : transformer : : GoalStateMerger < SparseModelType > : : ReturnType mergerResult = merger . mergeTargetAndSinkStates ( maybeStates , zeroRewardStates , storm : : storage : : BitVector ( maybeStates . size ( ) , false ) , std : : vector < std : : string > ( relevantRewardModels . begin ( ) , relevantRewardModels . end ( ) ) ) ;
result . preprocessedModel = mergerResult . model ;
result . possibleBottomStates = ( ~ minMaxNonZeroRewardStates . first ) % maybeStates ;
if ( mergerResult . targetState ) {
storm : : storage : : BitVector targetStateAsVector ( result . preprocessedModel - > getNumberOfStates ( ) , false ) ;
targetStateAsVector . set ( * mergerResult . targetState , true ) ;
result . possibleECChoices = result . preprocessedModel - > getTransitionMatrix ( ) . getRowIndicesOfRowGroups ( storm : : utility : : graph : : performProb0E ( * result . preprocessedModel , result . preprocessedModel - > getBackwardTransitions ( ) , storm : : storage : : BitVector ( targetStateAsVector . size ( ) , true ) , targetStateAsVector ) ) ;
result . possibleECChoices . set ( result . preprocessedModel - > getTransitionMatrix ( ) . getRowGroupIndices ( ) [ * mergerResult . targetState ] , true ) ;
// There is an additional state in the result
result . possibleBottomStates . resize ( result . possibleBottomStates . size ( ) + 1 , true ) ;
}
assert ( result . possibleBottomStates . size ( ) = = result . preprocessedModel - > getNumberOfStates ( ) ) ;
return result ;
}
template < typename SparseModelType >
typename SparseMultiObjectivePreprocessor < SparseModelType > : : ReturnType : : QueryType SparseMultiObjectivePreprocessor < SparseModelType > : : getQueryType ( std : : vector < Objective < ValueType > > const & objectives ) {
uint_fast64_t numOfObjectivesWithThreshold = 0 ;
for ( auto & obj : objectives ) {
if ( obj . bound ) {
+ + numOfObjectivesWithThreshold ;
}
}
if ( numOfObjectivesWithThreshold = = objectives . size ( ) ) {
return ReturnType : : QueryType : : Achievability ;
} else if ( numOfObjectivesWithThreshold + 1 = = objectives . size ( ) ) {
// Note: We do not want to consider a Pareto query when the total number of objectives is one.
return ReturnType : : QueryType : : Quantitative ;
} else if ( numOfObjectivesWithThreshold = = 0 ) {
return ReturnType : : QueryType : : Pareto ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " Invalid Multi-objective query: The numer of qualitative objectives should be either 0 (Pareto query), 1 (quantitative query), or #objectives (achievability query). " ) ;
}
}
template < typename SparseModelType >
std : : pair < storm : : storage : : BitVector , storm : : storage : : BitVector > SparseMultiObjectivePreprocessor < SparseModelType > : : getStatesWithNonZeroRewardMinMax ( ReturnType & result , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions ) {