Browse Source

smg lra debug commit

this should be dropped in the future
tempestpy_adaptions
Stefan Pranger 4 years ago
parent
commit
c6c5c5cc13
  1. 1
      src/storm/builder/ExplicitModelBuilder.cpp
  2. 3
      src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicGameInfiniteHorizonHelper.cpp
  3. 71
      src/storm/modelchecker/helper/infinitehorizon/internal/LraViHelper.cpp
  4. 4
      src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.cpp
  5. 77
      src/storm/solver/GmmxxMultiplier.cpp
  6. 56
      src/storm/storage/Decomposition.cpp
  7. 66
      src/storm/storage/MaximalEndComponent.cpp
  8. 593
      src/storm/storage/SparseMatrix.cpp

1
src/storm/builder/ExplicitModelBuilder.cpp

@ -161,6 +161,7 @@ namespace storm {
while (!statesToExplore.empty()) {
// Get the first state in the queue.
CompressedState currentState = statesToExplore.front().first;
STORM_LOG_DEBUG("Exploring (" << currentRowGroup << ") : " << toString(currentState, this->generator->getVariableInformation()));
StateType currentIndex = statesToExplore.front().second;
statesToExplore.pop_front();

3
src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicGameInfiniteHorizonHelper.cpp

@ -63,7 +63,10 @@ namespace storm {
this->_backwardTransitions = this->_computedBackwardTransitions.get();
}
this->_computedLongRunComponentDecomposition = std::make_unique<storm::storage::GameMaximalEndComponentDecomposition<ValueType>>(this->_transitionMatrix, *this->_backwardTransitions);
this->_longRunComponentDecomposition = this->_computedLongRunComponentDecomposition.get();
//STORM_LOG_DEBUG("\n" << this->_transitionMatrix);
STORM_LOG_DEBUG("GMEC: " << *(this->_longRunComponentDecomposition));
}
}

71
src/storm/modelchecker/helper/infinitehorizon/internal/LraViHelper.cpp

@ -24,11 +24,11 @@ namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
LraViHelper<ValueType, ComponentType, TransitionsType>::LraViHelper(ComponentType const& component, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, ValueType const& aperiodicFactor, storm::storage::BitVector const* timedStates, std::vector<ValueType> const* exitRates) : _transitionMatrix(transitionMatrix), _timedStates(timedStates), _hasInstantStates(TransitionsType == LraViTransitionsType::DetTsNondetIs || TransitionsType == LraViTransitionsType::DetTsDetIs), _Tsx1IsCurrent(false) {
setComponent(component);
// Run through the component and collect some data:
// We create two submodels, one consisting of the timed states of the component and one consisting of the instant states of the component.
// For this, we create a state index map that point from state indices of the input model to indices of the corresponding submodel of that state.
@ -141,8 +141,9 @@ namespace storm {
_IsTransitions = isTransitionsBuilder.build();
_IsToTsTransitions = isToTsTransitionsBuilder.build();
}
STORM_LOG_DEBUG(uniformizationFactor << " - " << _uniformizationRate);
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::setComponent(ComponentType component) {
_component.clear();
@ -156,7 +157,7 @@ namespace storm {
}
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
ValueType LraViHelper<ValueType, ComponentType, TransitionsType>::performValueIteration(Environment const& env, ValueGetter const& stateValueGetter, ValueGetter const& actionValueGetter, std::vector<ValueType> const* exitRates, storm::solver::OptimizationDirection const* dir, std::vector<uint64_t>* choices) {
initializeNewValues(stateValueGetter, actionValueGetter, exitRates);
@ -166,7 +167,7 @@ namespace storm {
if (env.solver().lra().isMaximalIterationCountSet()) {
maxIter = env.solver().lra().getMaximalIterationCount();
}
// start the iterations
ValueType result = storm::utility::zero<ValueType>();
uint64_t iter = 0;
@ -198,7 +199,7 @@ namespace storm {
// If there will be a next iteration, we have to prepare it.
prepareNextIteration(env);
}
if (maxIter.is_initialized() && iter == maxIter.get()) {
STORM_LOG_WARN("LRA computation did not converge within " << iter << " iterations.");
@ -207,15 +208,23 @@ namespace storm {
} else {
STORM_LOG_TRACE("LRA computation converged after " << iter << " iterations.");
}
if (choices) {
// We will be doing one more iteration step and track scheduler choices this time.
prepareNextIteration(env);
performIterationStep(env, dir, choices);
}
std::cout << "result (" << iter << " steps):" << std::endl;
for(int i = 0; i < xNew().size() ; i++ ) {
std::cout << std::setprecision(4) << i << "\t: " << xNew().at(i) << "\t" << xNew().at(i) * _uniformizationRate << "\t" << std::setprecision(16) << xOld().at(i) *_uniformizationRate << std::endl;
//if(i == 50) {std::cout << "only showing top 50 lines"; break; }
for(int i = 0; i < xNew().size() ; i++ ) {
std::cout << std::setprecision(4) << i << "\t: " << xNew().at(i) << "\t" << xNew().at(i) * _uniformizationRate << "\t" << std::setprecision(16) << xOld().at(i) *_uniformizationRate << std::endl;
//if(i == 50) {std::cout << "only showing top 50 lines"; break; }
}
return result;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::initializeNewValues(ValueGetter const& stateValueGetter, ValueGetter const& actionValueGetter, std::vector<ValueType> const* exitRates) {
// clear potential old values and reserve enough space for new values
@ -225,7 +234,7 @@ namespace storm {
_IsChoiceValues.clear();
_IsChoiceValues.reserve(_IsTransitions.getRowCount());
}
// Set the new choice-based values
ValueType actionRewardScalingFactor = storm::utility::one<ValueType>() / _uniformizationRate;
for (auto const& element : _component) {
@ -250,14 +259,14 @@ namespace storm {
// Set-up new iteration vectors for timed states
_Tsx1.assign(_TsTransitions.getRowGroupCount(), storm::utility::zero<ValueType>());
_Tsx2 = _Tsx1;
if (_hasInstantStates) {
// Set-up vectors for storing intermediate results for instant states.
_Isx.resize(_IsTransitions.getRowGroupCount(), storm::utility::zero<ValueType>());
_Isb = _IsChoiceValues;
}
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::prepareSolversAndMultipliers(const Environment& env, storm::solver::OptimizationDirection const* dir) {
_TsMultiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _TsTransitions);
@ -315,7 +324,7 @@ namespace storm {
STORM_LOG_THROW(!req.hasEnabledCriticalRequirement(), storm::exceptions::UnmetRequirementException, "The solver requirement " << req.getEnabledRequirementsAsString() << " has not been cleared.");
}
}
// Set up multipliers for transitions connecting timed and instant states
_TsToIsMultiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _TsToIsTransitions);
_IsToTsMultiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _IsToTsTransitions);
@ -324,7 +333,7 @@ namespace storm {
_TsMultiplier->setOptimizationDirectionOverride(env.solver().multiplier().getOptimizationDirectionOverride().get());
}
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::setInputModelChoices(std::vector<uint64_t>& choices, std::vector<uint64_t> const& localMecChoices, bool setChoiceZeroToTimedStates, bool setChoiceZeroToInstantStates) const {
// Transform the local choices (within this mec) to choice indices for the input model
@ -347,7 +356,7 @@ namespace storm {
}
STORM_LOG_ASSERT(localState == localMecChoices.size(), "Did not traverse all component states.");
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::performIterationStep(Environment const& env, storm::solver::OptimizationDirection const* dir, std::vector<uint64_t>* choices) {
STORM_LOG_ASSERT(!((nondetTs() || nondetIs()) && dir == nullptr), "No optimization direction provided for model with nondeterminism");
@ -355,13 +364,13 @@ namespace storm {
if (!_TsMultiplier) {
prepareSolversAndMultipliers(env, dir);
}
// Compute new x values for the timed states
// Flip what is new and what is old
_Tsx1IsCurrent = !_Tsx1IsCurrent;
// At this point, xOld() points to what has been computed in the most recent call of performIterationStep (initially, this is the 0-vector).
// The result of this ongoing computation will be stored in xNew()
// Compute the values obtained by a single uniformization step between timed states only
if (nondetTs() && !gameNondetTs()) {
if (choices == nullptr) {
@ -425,7 +434,7 @@ namespace storm {
_TsToIsMultiplier->multiply(env, _Isx, &xNew(), xNew());
}
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
typename LraViHelper<ValueType, ComponentType, TransitionsType>::ConvergenceCheckResult LraViHelper<ValueType, ComponentType, TransitionsType>::checkConvergence(bool relative, ValueType precision) const {
STORM_LOG_ASSERT(_TsMultiplier, "tried to check for convergence without doing an iteration first.");
@ -433,7 +442,7 @@ namespace storm {
// We need to 'revert' this scaling when computing the absolute precision.
// However, for relative precision, the scaling cancels out.
ValueType threshold = relative ? precision : ValueType(precision / _uniformizationRate);
ConvergenceCheckResult res = { true, storm::utility::one<ValueType>() };
// Now check whether the currently produced results are precise enough
STORM_LOG_ASSERT(threshold > storm::utility::zero<ValueType>(), "Did not expect a non-positive threshold.");
@ -460,15 +469,15 @@ namespace storm {
break;
}
}
// Compute the average of the maximal and the minimal difference.
ValueType avgDiff = (maxDiff + minDiff) / (storm::utility::convertNumber<ValueType>(2.0));
// "Undo" the scaling of the values
res.currentValue = avgDiff * _uniformizationRate;
return res;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
void LraViHelper<ValueType, ComponentType, TransitionsType>::prepareNextIteration(Environment const& env) {
// To avoid large (and numerically unstable) x-values, we substract a reference value.
@ -480,39 +489,39 @@ namespace storm {
_IsToTsMultiplier->multiply(env, xNew(), &_IsChoiceValues, _Isb);
}
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
bool LraViHelper<ValueType, ComponentType, TransitionsType>::isTimedState(uint64_t const& inputModelStateIndex) const {
STORM_LOG_ASSERT(!_hasInstantStates || _timedStates != nullptr, "Model has instant states but no partition into timed and instant states is given.");
STORM_LOG_ASSERT(!_hasInstantStates || inputModelStateIndex < _timedStates->size(), "Unable to determine whether state " << inputModelStateIndex << " is timed.");
return !_hasInstantStates || _timedStates->get(inputModelStateIndex);
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
std::vector<ValueType>& LraViHelper<ValueType, ComponentType, TransitionsType>::xNew() {
return _Tsx1IsCurrent ? _Tsx1 : _Tsx2;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
std::vector<ValueType> const& LraViHelper<ValueType, ComponentType, TransitionsType>::xNew() const {
return _Tsx1IsCurrent ? _Tsx1 : _Tsx2;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
std::vector<ValueType>& LraViHelper<ValueType, ComponentType, TransitionsType>::xOld() {
return _Tsx1IsCurrent ? _Tsx2 : _Tsx1;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
std::vector<ValueType> const& LraViHelper<ValueType, ComponentType, TransitionsType>::xOld() const {
return _Tsx1IsCurrent ? _Tsx2 : _Tsx1;
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
bool LraViHelper<ValueType, ComponentType, TransitionsType>::nondetTs() const {
return TransitionsType == LraViTransitionsType::NondetTsNoIs || gameNondetTs();
}
template <typename ValueType, typename ComponentType, LraViTransitionsType TransitionsType>
bool LraViHelper<ValueType, ComponentType, TransitionsType>::nondetIs() const {
return TransitionsType == LraViTransitionsType::DetTsNondetIs;
@ -529,11 +538,11 @@ namespace storm {
template class LraViHelper<storm::RationalNumber, storm::storage::MaximalEndComponent, LraViTransitionsType::GameNondetTsNoIs>;
template class LraViHelper<double, storm::storage::MaximalEndComponent, LraViTransitionsType::DetTsNondetIs>;
template class LraViHelper<storm::RationalNumber, storm::storage::MaximalEndComponent, LraViTransitionsType::DetTsNondetIs>;
template class LraViHelper<double, storm::storage::StronglyConnectedComponent, LraViTransitionsType::DetTsNoIs>;
template class LraViHelper<storm::RationalNumber, storm::storage::StronglyConnectedComponent, LraViTransitionsType::DetTsNoIs>;
}
}
}
}
}

4
src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.cpp

@ -65,6 +65,7 @@ namespace storm {
Environment solverEnv = env;
coalitionIndicator(solverEnv, checkTask);
storm::logic::GameFormula const& gameFormula = checkTask.getFormula();
storm::logic::Formula const& subFormula = gameFormula.getSubformula();
@ -143,6 +144,8 @@ namespace storm {
playerIds.push_back(boost::get<uint_fast64_t>(player) - 1);
}
}
//for(auto const& p : playerActionIndices) std::cout << p.first << " - " << p.second << ", "; std::cout << std::endl;
//for(auto const& p : playerIds) std::cout << p << ", "; std::cout << std::endl;
for(uint i = 0; i < playerActionIndices.size(); i++) {
if(std::find(playerIds.begin(), playerIds.end(), playerActionIndices.at(i).second) != playerIds.end()) {
@ -151,6 +154,7 @@ namespace storm {
}
coalitionIndicators.complement();
//std::cout << "MINMAX OVERRIDE: " << coalitionIndicators << std::endl;
env.solver().multiplier().setOptimizationDirectionOverride(coalitionIndicators);
}

77
src/storm/solver/GmmxxMultiplier.cpp

@ -16,25 +16,26 @@
namespace storm {
namespace solver {
template<typename ValueType>
GmmxxMultiplier<ValueType>::GmmxxMultiplier(storm::storage::SparseMatrix<ValueType> const& matrix) : Multiplier<ValueType>(matrix) {
// Intentionally left empty.
//STORM_LOG_DEBUG("\n" << matrix);
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::initialize() const {
if (gmmMatrix.nrows() == 0) {
gmmMatrix = std::move(*storm::adapters::GmmxxAdapter<ValueType>().toGmmxxSparseMatrix(this->matrix));
}
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::clearCache() const {
gmmMatrix = gmm::csr_matrix<ValueType>();
Multiplier<ValueType>::clearCache();
}
template<typename ValueType>
bool GmmxxMultiplier<ValueType>::parallelize(Environment const& env) const {
#ifdef STORM_HAVE_INTELTBB
@ -43,7 +44,7 @@ namespace storm {
return false;
#endif
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multiply(Environment const& env, std::vector<ValueType> const& x, std::vector<ValueType> const* b, std::vector<ValueType>& result) const {
initialize();
@ -65,7 +66,7 @@ namespace storm {
std::swap(result, *this->cachedVector);
}
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multiplyGaussSeidel(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> const* b, bool backwards) const {
initialize();
@ -84,7 +85,7 @@ namespace storm {
}
}
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multiplyAndReduce(Environment const& env, OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType> const& x, std::vector<ValueType> const* b, std::vector<ValueType>& result, std::vector<uint_fast64_t>* choices) const {
initialize();
@ -106,13 +107,13 @@ namespace storm {
std::swap(result, *this->cachedVector);
}
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multiplyAndReduceGaussSeidel(Environment const& env, OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<uint_fast64_t>* choices, bool backwards) const {
initialize();
multAddReduceHelper(dir, rowGroupIndices, x, b, x, choices, backwards);
}
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multiplyRow(uint64_t const& rowIndex, std::vector<ValueType> const& x, ValueType& value) const {
initialize();
@ -148,14 +149,14 @@ namespace storm {
}
}
}
template<typename ValueType>
template<typename Compare, bool backwards>
void GmmxxMultiplier<ValueType>::multAddReduceHelper(std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType> const& x, std::vector<ValueType> const* b, std::vector<ValueType>& result, std::vector<uint64_t>* choices) const {
Compare compare;
typedef std::vector<ValueType> VectorType;
typedef gmm::csr_matrix<ValueType> MatrixType;
typename gmm::linalg_traits<VectorType>::const_iterator add_it, add_ite;
if (b) {
add_it = backwards ? gmm::vect_end(*b) - 1 : gmm::vect_begin(*b);
@ -181,6 +182,7 @@ namespace storm {
uint64_t currentRowGroup = backwards ? rowGroupIndices.size() - 1 : 0;
auto row_group_it = backwards ? rowGroupIndices.end() - 2 : rowGroupIndices.begin();
auto row_group_ite = backwards ? rowGroupIndices.begin() - 1 : rowGroupIndices.end() - 1;
//if(choices) STORM_LOG_DEBUG(" ");
while (row_group_it != row_group_ite) {
ValueType currentValue = storm::utility::zero<ValueType>();
@ -199,7 +201,7 @@ namespace storm {
oldSelectedChoiceValue = currentValue;
}
}
// move row-based iterators to the next row
if (backwards) {
--itr;
@ -213,6 +215,10 @@ namespace storm {
// Process the (rowGroupSize-1) remaining rows within the current row Group
uint64_t rowGroupSize = *(row_group_it + 1) - *row_group_it;
uint choiceforprintout = 0;
//std::cout << currentRowGroup << ": " << currentValue << ", ";
//STORM_LOG_DEBUG(std::setprecision(3) << vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x) << " + " << *add_it << "; ");
//STORM_LOG_DEBUG(std::setprecision(3) << vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x) << " + " << *add_it << "; ");
for (uint64_t i = 1; i < rowGroupSize; ++i) {
ValueType newValue = b ? *add_it : storm::utility::zero<ValueType>();
newValue += vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x);
@ -220,12 +226,13 @@ namespace storm {
if (choices && currentRow == *choice_it + *row_group_it) {
oldSelectedChoiceValue = newValue;
}
if(this->isOverridden(currentRowGroup) ? !compare(newValue, currentValue) : compare(newValue, currentValue)) {
//std::cout << newValue << ", ";
//STORM_LOG_DEBUG(std::setprecision(3) << vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x) << " + " << *add_it << "; ");
currentValue = newValue;
if (choices) {
selectedChoice = currentRow - *row_group_it;
}
choiceforprintout = currentRow - *row_group_it;
}
// move row-based iterators to the next row
if (backwards) {
@ -238,7 +245,8 @@ namespace storm {
++add_it;
}
}
//STORM_LOG_DEBUG("\t= " << currentValue << "\tchoice: " << choiceforprintout);
//std::cout << std::fixed << std::setprecision(2) << " | v(" << currentRowGroup << ")=" << currentValue << " c: " << choiceforprintout << " |\n" ;
// Finally write value to target vector.
*target_it = currentValue;
if(choices) {
@ -261,6 +269,7 @@ namespace storm {
++currentRowGroup;
}
}
//std::cout << std::endl;
}
template<>
@ -286,7 +295,7 @@ namespace storm {
multAdd(x, b, result);
#endif
}
#ifdef STORM_HAVE_INTELTBB
template<typename ValueType, typename Compare>
class TbbMultAddReduceFunctor {
@ -294,14 +303,14 @@ namespace storm {
TbbMultAddReduceFunctor(std::vector<uint64_t> const& rowGroupIndices, gmm::csr_matrix<ValueType> const& matrix, std::vector<ValueType> const& x, std::vector<ValueType> const* b, std::vector<ValueType>& result, std::vector<uint64_t>* choices) : rowGroupIndices(rowGroupIndices), matrix(matrix), x(x), b(b), result(result), choices(choices) {
// Intentionally left empty.
}
void operator()(tbb::blocked_range<unsigned long> const& range) const {
typedef std::vector<ValueType> VectorType;
typedef gmm::csr_matrix<ValueType> MatrixType;
auto groupIt = rowGroupIndices.begin() + range.begin();
auto groupIte = rowGroupIndices.begin() + range.end();
auto itr = mat_row_const_begin(matrix) + *groupIt;
typename std::vector<ValueType>::const_iterator bIt;
if (b) {
@ -311,40 +320,40 @@ namespace storm {
if (choices) {
choiceIt = choices->begin() + range.begin();
}
auto resultIt = result.begin() + range.begin();
// Variables for correctly tracking choices (only update if new choice is strictly better).
ValueType oldSelectedChoiceValue;
uint64_t selectedChoice;
uint64_t currentRow = *groupIt;
for (; groupIt != groupIte; ++groupIt, ++resultIt, ++choiceIt) {
ValueType currentValue = storm::utility::zero<ValueType>();
// Only multiply and reduce if the row group is not empty.
if (*groupIt != *(groupIt + 1)) {
if (b) {
currentValue = *bIt;
++bIt;
}
currentValue += vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x);
if (choices) {
selectedChoice = currentRow - *groupIt;
if (*choiceIt == selectedChoice) {
oldSelectedChoiceValue = currentValue;
}
}
++itr;
++currentRow;
for (auto itre = mat_row_const_begin(matrix) + *(groupIt + 1); itr != itre; ++itr, ++bIt, ++currentRow) {
ValueType newValue = b ? *bIt : storm::utility::zero<ValueType>();
newValue += vect_sp(gmm::linalg_traits<MatrixType>::row(itr), x);
if (compare(newValue, currentValue)) {
currentValue = newValue;
if (choices) {
@ -353,7 +362,7 @@ namespace storm {
}
}
}
// Finally write value to target vector.
*resultIt = currentValue;
if (choices && compare(currentValue, oldSelectedChoiceValue)) {
@ -361,7 +370,7 @@ namespace storm {
}
}
}
private:
Compare compare;
std::vector<uint64_t> const& rowGroupIndices;
@ -372,7 +381,7 @@ namespace storm {
std::vector<uint64_t>* choices;
};
#endif
template<typename ValueType>
void GmmxxMultiplier<ValueType>::multAddReduceParallel(storm::solver::OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<ValueType> const& x, std::vector<ValueType> const* b, std::vector<ValueType>& result, std::vector<uint64_t>* choices) const {
#ifdef STORM_HAVE_INTELTBB
@ -386,18 +395,18 @@ namespace storm {
multAddReduceHelper(dir, rowGroupIndices, x, b, result, choices);
#endif
}
template<>
void GmmxxMultiplier<storm::RationalFunction>::multAddReduceParallel(storm::solver::OptimizationDirection const& dir, std::vector<uint64_t> const& rowGroupIndices, std::vector<storm::RationalFunction> const& x, std::vector<storm::RationalFunction> const* b, std::vector<storm::RationalFunction>& result, std::vector<uint64_t>* choices) const {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "This operation is not supported.");
}
template class GmmxxMultiplier<double>;
#ifdef STORM_HAVE_CARL
template class GmmxxMultiplier<storm::RationalNumber>;
template class GmmxxMultiplier<storm::RationalFunction>;
#endif
}
}

56
src/storm/storage/Decomposition.cpp

@ -8,84 +8,84 @@
namespace storm {
namespace storage {
template <typename BlockType>
Decomposition<BlockType>::Decomposition() : blocks() {
// Intentionally left empty.
}
template <typename BlockType>
Decomposition<BlockType>::Decomposition(Decomposition const& other) : blocks(other.blocks) {
// Intentionally left empty.
}
template <typename BlockType>
Decomposition<BlockType>& Decomposition<BlockType>::operator=(Decomposition const& other) {
this->blocks = other.blocks;
return *this;
}
template <typename BlockType>
Decomposition<BlockType>::Decomposition(Decomposition&& other) : blocks(std::move(other.blocks)) {
// Intentionally left empty.
}
template <typename BlockType>
Decomposition<BlockType>& Decomposition<BlockType>::operator=(Decomposition&& other) {
this->blocks = std::move(other.blocks);
return *this;
}
template <typename BlockType>
std::size_t Decomposition<BlockType>::size() const {
return blocks.size();
}
template <typename BlockType>
bool Decomposition<BlockType>::empty() const {
return blocks.empty();
}
template <typename BlockType>
typename Decomposition<BlockType>::iterator Decomposition<BlockType>::begin() {
return blocks.begin();
}
template <typename BlockType>
typename Decomposition<BlockType>::iterator Decomposition<BlockType>::end() {
return blocks.end();
}
template <typename BlockType>
typename Decomposition<BlockType>::const_iterator Decomposition<BlockType>::begin() const {
return blocks.begin();
}
template <typename BlockType>
typename Decomposition<BlockType>::const_iterator Decomposition<BlockType>::end() const {
return blocks.end();
}
template <typename BlockType>
BlockType const& Decomposition<BlockType>::getBlock(uint_fast64_t index) const {
return blocks.at(index);
}
template <typename BlockType>
BlockType& Decomposition<BlockType>::getBlock(uint_fast64_t index) {
return blocks.at(index);
}
template <typename BlockType>
BlockType const& Decomposition<BlockType>::operator[](uint_fast64_t index) const {
return blocks[index];
}
template <typename BlockType>
BlockType& Decomposition<BlockType>::operator[](uint_fast64_t index) {
return blocks[index];
}
template <typename BlockType>
template <typename ValueType>
storm::storage::SparseMatrix<ValueType> Decomposition<BlockType>::extractPartitionDependencyGraph(storm::storage::SparseMatrix<ValueType> const& matrix) const {
@ -97,49 +97,49 @@ namespace storm {
stateToBlockMap[state] = i;
}
}
// The resulting sparse matrix will have as many rows/columns as there are blocks in the partition.
storm::storage::SparseMatrixBuilder<ValueType> dependencyGraphBuilder(this->size(), this->size());
for (uint_fast64_t currentBlockIndex = 0; currentBlockIndex < this->size(); ++currentBlockIndex) {
// Get the next block.
block_type const& block = this->getBlock(currentBlockIndex);
// Now, we determine the blocks which are reachable (in one step) from the current block.
storm::storage::FlatSet<uint_fast64_t> allTargetBlocks;
for (auto state : block) {
for (auto const& transitionEntry : matrix.getRowGroup(state)) {
uint_fast64_t targetBlock = stateToBlockMap[transitionEntry.getColumn()];
// We only need to consider transitions that are actually leaving the SCC.
if (targetBlock != currentBlockIndex) {
allTargetBlocks.insert(targetBlock);
}
}
}
// Now we can just enumerate all the target blocks and insert the corresponding transitions.
for (auto const& targetBlock : allTargetBlocks) {
dependencyGraphBuilder.addNextValue(currentBlockIndex, targetBlock, storm::utility::one<ValueType>());
}
}
return dependencyGraphBuilder.build();
}
template <typename BlockType>
std::ostream& operator<<(std::ostream& out, Decomposition<BlockType> const& decomposition) {
out << "[";
out << "[ ";
if (decomposition.size() > 0) {
for (uint_fast64_t blockIndex = 0; blockIndex < decomposition.size() - 1; ++blockIndex) {
out << decomposition.blocks[blockIndex] << ", ";
out << decomposition.blocks[blockIndex] << ", " << std::endl;
}
out << decomposition.blocks.back();
}
out << "]";
out << " ]";
return out;
}
template storm::storage::SparseMatrix<double> Decomposition<StateBlock>::extractPartitionDependencyGraph(storm::storage::SparseMatrix<double> const& matrix) const;
template storm::storage::SparseMatrix<float> Decomposition<StateBlock>::extractPartitionDependencyGraph(storm::storage::SparseMatrix<float> const& matrix) const;
template class Decomposition<StateBlock>;
@ -149,7 +149,7 @@ namespace storm {
template storm::storage::SparseMatrix<float> Decomposition<StronglyConnectedComponent>::extractPartitionDependencyGraph(storm::storage::SparseMatrix<float> const& matrix) const;
template class Decomposition<StronglyConnectedComponent>;
template std::ostream& operator<<(std::ostream& out, Decomposition<StronglyConnectedComponent> const& decomposition);
template class Decomposition<MaximalEndComponent>;
template std::ostream& operator<<(std::ostream& out, Decomposition<MaximalEndComponent> const& decomposition);
} // namespace storage

66
src/storm/storage/MaximalEndComponent.cpp

@ -3,125 +3,125 @@
namespace storm {
namespace storage {
std::ostream& operator<<(std::ostream& out, storm::storage::FlatSet<uint_fast64_t> const& block);
MaximalEndComponent::MaximalEndComponent() : stateToChoicesMapping() {
// Intentionally left empty.
}
MaximalEndComponent::MaximalEndComponent(MaximalEndComponent const& other) : stateToChoicesMapping(other.stateToChoicesMapping) {
// Intentionally left empty.
}
MaximalEndComponent& MaximalEndComponent::operator=(MaximalEndComponent const& other) {
stateToChoicesMapping = other.stateToChoicesMapping;
return *this;
}
MaximalEndComponent::MaximalEndComponent(MaximalEndComponent&& other) : stateToChoicesMapping(std::move(other.stateToChoicesMapping)) {
// Intentionally left empty.
}
MaximalEndComponent& MaximalEndComponent::operator=(MaximalEndComponent&& other) {
stateToChoicesMapping = std::move(other.stateToChoicesMapping);
return *this;
}
void MaximalEndComponent::addState(uint_fast64_t state, set_type const& choices) {
stateToChoicesMapping[state] = choices;
}
void MaximalEndComponent::addState(uint_fast64_t state, set_type&& choices) {
stateToChoicesMapping.emplace(state, std::move(choices));
}
std::size_t MaximalEndComponent::size() const {
return stateToChoicesMapping.size();
}
MaximalEndComponent::set_type const& MaximalEndComponent::getChoicesForState(uint_fast64_t state) const {
auto stateChoicePair = stateToChoicesMapping.find(state);
if (stateChoicePair == stateToChoicesMapping.end()) {
throw storm::exceptions::InvalidStateException() << "Invalid call to MaximalEndComponent::getChoicesForState: cannot retrieve choices for state not contained in MEC.";
}
return stateChoicePair->second;
}
MaximalEndComponent::set_type& MaximalEndComponent::getChoicesForState(uint_fast64_t state) {
auto stateChoicePair = stateToChoicesMapping.find(state);
if (stateChoicePair == stateToChoicesMapping.end()) {
throw storm::exceptions::InvalidStateException() << "Invalid call to MaximalEndComponent::getChoicesForState: cannot retrieve choices for state not contained in MEC.";
}
return stateChoicePair->second;
}
bool MaximalEndComponent::containsState(uint_fast64_t state) const {
auto stateChoicePair = stateToChoicesMapping.find(state);
if (stateChoicePair == stateToChoicesMapping.end()) {
return false;
}
return true;
}
void MaximalEndComponent::removeState(uint_fast64_t state) {
auto stateChoicePair = stateToChoicesMapping.find(state);
if (stateChoicePair == stateToChoicesMapping.end()) {
throw storm::exceptions::InvalidStateException() << "Invalid call to MaximalEndComponent::removeState: cannot remove state not contained in MEC.";
}
stateToChoicesMapping.erase(stateChoicePair);
}
bool MaximalEndComponent::containsChoice(uint_fast64_t state, uint_fast64_t choice) const {
auto stateChoicePair = stateToChoicesMapping.find(state);
if (stateChoicePair == stateToChoicesMapping.end()) {
throw storm::exceptions::InvalidStateException() << "Invalid call to MaximalEndComponent::containsChoice: cannot obtain choices for state not contained in MEC.";
}
return stateChoicePair->second.find(choice) != stateChoicePair->second.end();
}
MaximalEndComponent::set_type MaximalEndComponent::getStateSet() const {
set_type states;
states.reserve(stateToChoicesMapping.size());
for (auto const& stateChoicesPair : stateToChoicesMapping) {
states.insert(stateChoicesPair.first);
}
return states;
}
std::ostream& operator<<(std::ostream& out, MaximalEndComponent const& component) {
out << "{";
for (auto const& stateChoicesPair : component.stateToChoicesMapping) {
out << "{" << stateChoicesPair.first << ", " << stateChoicesPair.second << "}";
out << "(" << stateChoicesPair.first << ", " << stateChoicesPair.second << ")";
}
out << "}";
return out;
}
MaximalEndComponent::iterator MaximalEndComponent::begin() {
return stateToChoicesMapping.begin();
}
MaximalEndComponent::iterator MaximalEndComponent::end() {
return stateToChoicesMapping.end();
}
MaximalEndComponent::const_iterator MaximalEndComponent::begin() const {
return stateToChoicesMapping.begin();
}
MaximalEndComponent::const_iterator MaximalEndComponent::end() const {
return stateToChoicesMapping.end();
}

593
src/storm/storage/SparseMatrix.cpp
File diff suppressed because it is too large
View File

Loading…
Cancel
Save