diff --git a/examples/ctmc/tandem/tandem.sm b/examples/ctmc/tandem/tandem.sm index 439d33813..c35246e1a 100644 --- a/examples/ctmc/tandem/tandem.sm +++ b/examples/ctmc/tandem/tandem.sm @@ -35,4 +35,8 @@ endmodule // reward - number of customers in network rewards "customers" true : sc + sm; -endrewards \ No newline at end of file +endrewards + +label "network_full" = sc=c&sm=c&ph=2; +label "first_queue_full" = sc=c; +label "second_queue_full" = sm=c; diff --git a/src/builder/DdPrismModelBuilder.cpp b/src/builder/DdPrismModelBuilder.cpp index 6378a3c56..eae18d06e 100644 --- a/src/builder/DdPrismModelBuilder.cpp +++ b/src/builder/DdPrismModelBuilder.cpp @@ -562,10 +562,12 @@ namespace storm { } storm::dd::Add<Type> transitionRewardDd = synchronization * states * rewards; - if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::MDP) { - transitionRewardDd = transitions.notZero().toAdd() * transitionRewardDd; - } else { + if (generationInfo.program.getModelType() == storm::prism::Program::ModelType::DTMC) { + // For DTMCs we need to keep the weighting for the scaling that follows. transitionRewardDd = transitions * transitionRewardDd; + } else { + // For all other model types, we do not scale the rewards. + transitionRewardDd = transitions.notZero().toAdd() * transitionRewardDd; } // Perform some sanity checks. diff --git a/src/builder/ExplicitPrismModelBuilder.cpp b/src/builder/ExplicitPrismModelBuilder.cpp index 05cf9c52e..4315bfdde 100644 --- a/src/builder/ExplicitPrismModelBuilder.cpp +++ b/src/builder/ExplicitPrismModelBuilder.cpp @@ -127,21 +127,6 @@ namespace storm { #endif } - storm::prism::RewardModel rewardModel = storm::prism::RewardModel(); - - // Select the appropriate reward model. - if (options.buildRewards) { - // If a specific reward model was selected or one with the empty name exists, select it. - if (options.rewardModelName) { - rewardModel = preparedProgram.getRewardModel(options.rewardModelName.get()); - } else if (preparedProgram.hasRewardModel("")) { - rewardModel = preparedProgram.getRewardModel(""); - } else if (preparedProgram.hasRewardModel()) { - // Otherwise, we select the first one. - rewardModel = preparedProgram.getRewardModel(0); - } - } - // If the set of labels we are supposed to built is restricted, we need to remove the other labels from the program. if (options.labelsToBuild) { preparedProgram.filterLabels(options.labelsToBuild.get()); @@ -162,6 +147,20 @@ namespace storm { // Now that the program is fixed, we we need to substitute all constants with their concrete value. preparedProgram = preparedProgram.substituteConstants(); + + // Select the appropriate reward model (after the constants have been substituted). + storm::prism::RewardModel rewardModel = storm::prism::RewardModel(); + if (options.buildRewards) { + // If a specific reward model was selected or one with the empty name exists, select it. + if (options.rewardModelName) { + rewardModel = preparedProgram.getRewardModel(options.rewardModelName.get()); + } else if (preparedProgram.hasRewardModel("")) { + rewardModel = preparedProgram.getRewardModel(""); + } else if (preparedProgram.hasRewardModel()) { + // Otherwise, we select the first one. + rewardModel = preparedProgram.getRewardModel(0); + } + } ModelComponents modelComponents = buildModelComponents(preparedProgram, rewardModel, options); diff --git a/src/modelchecker/csl/HybridCtmcCslModelChecker.cpp b/src/modelchecker/csl/HybridCtmcCslModelChecker.cpp new file mode 100644 index 000000000..e371ad8ce --- /dev/null +++ b/src/modelchecker/csl/HybridCtmcCslModelChecker.cpp @@ -0,0 +1,364 @@ +#include "src/modelchecker/csl/HybridCtmcCslModelChecker.h" +#include "src/modelchecker/csl/SparseCtmcCslModelChecker.h" +#include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h" + +#include "src/storage/dd/CuddOdd.h" + +#include "src/utility/macros.h" +#include "src/utility/graph.h" + +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h" + +#include "src/exceptions/InvalidStateException.h" +#include "src/exceptions/InvalidPropertyException.h" + +namespace storm { + namespace modelchecker { + template<storm::dd::DdType DdType, class ValueType> + HybridCtmcCslModelChecker<DdType, ValueType>::HybridCtmcCslModelChecker(storm::models::symbolic::Ctmc<DdType> const& model) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(new storm::utility::solver::LinearEquationSolverFactory<ValueType>()) { + // Intentionally left empty. + } + + template<storm::dd::DdType DdType, class ValueType> + HybridCtmcCslModelChecker<DdType, ValueType>::HybridCtmcCslModelChecker(storm::models::symbolic::Ctmc<DdType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) { + // Intentionally left empty. + } + + template<storm::dd::DdType DdType, class ValueType> + bool HybridCtmcCslModelChecker<DdType, ValueType>::canHandle(storm::logic::Formula const& formula) const { + return formula.isCslStateFormula() || formula.isCslPathFormula() || formula.isRewardPathFormula(); + } + + template<storm::dd::DdType DdType, class ValueType> + storm::dd::Add<DdType> HybridCtmcCslModelChecker<DdType, ValueType>::computeProbabilityMatrix(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& rateMatrix, storm::dd::Add<DdType> const& exitRateVector) { + return rateMatrix / exitRateVector; + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); + std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); + SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + + return HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(this->getModel(), this->computeProbabilityMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); + SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), HybridDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(this->getModel(), this->computeProbabilityMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), subResult.getTruthValuesVector()))); + } + + template<storm::dd::DdType DdType, class ValueType> + storm::models::symbolic::Ctmc<DdType> const& HybridCtmcCslModelChecker<DdType, ValueType>::getModel() const { + return this->template getModelAs<storm::models::symbolic::Ctmc<DdType>>(); + } + + template<storm::dd::DdType DdType, class ValueType> + storm::dd::Add<DdType> HybridCtmcCslModelChecker<DdType, ValueType>::computeUniformizedMatrix(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Add<DdType> const& exitRateVector, storm::dd::Bdd<DdType> const& maybeStates, ValueType uniformizationRate) { + STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << "."); + STORM_LOG_DEBUG("Keeping " << maybeStates.getNonZeroCount() << " rows."); + + // Cut all non-maybe rows/columns from the transition matrix. + storm::dd::Add<DdType> uniformizedMatrix = transitionMatrix * maybeStates.toAdd() * maybeStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd(); + + // Now perform the uniformization. + uniformizedMatrix = uniformizedMatrix / model.getManager().getConstant(uniformizationRate); + storm::dd::Add<DdType> diagonal = model.getRowColumnIdentity() * maybeStates.toAdd(); + storm::dd::Add<DdType> diagonalOffset = diagonal; + diagonalOffset -= diagonal * (exitRateVector / model.getManager().getConstant(uniformizationRate)); + uniformizedMatrix += diagonalOffset; + + return uniformizedMatrix; + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); + SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + + boost::optional<storm::dd::Add<DdType>> modifiedStateRewardVector; + if (this->getModel().hasStateRewards()) { + modifiedStateRewardVector = this->getModel().getStateRewardVector() / this->getModel().getExitRateVector(); + } + + return HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(this->getModel(), this->computeProbabilityMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), modifiedStateRewardVector, this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *linearEquationSolverFactory, qualitative); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); + std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); + SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + double lowerBound = 0; + double upperBound = 0; + if (!pathFormula.hasDiscreteTimeBound()) { + std::pair<double, double> const& intervalBounds = pathFormula.getIntervalBounds(); + lowerBound = intervalBounds.first; + upperBound = intervalBounds.second; + } else { + upperBound = pathFormula.getDiscreteTimeBound(); + } + + return this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), qualitative, lowerBound, upperBound); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, storm::dd::Add<DdType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const { + // If the time bounds are [0, inf], we rather call untimed reachability. + storm::utility::ConstantsComparator<ValueType> comparator; + if (comparator.isZero(lowerBound) && comparator.isInfinity(upperBound)) { + return HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(this->getModel(), this->computeProbabilityMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), phiStates, psiStates, qualitative, *this->linearEquationSolverFactory); + } + + // From this point on, we know that we have to solve a more complicated problem [t, t'] with either t != 0 + // or t' != inf. + + // If we identify the states that have probability 0 of reaching the target states, we can exclude them from the + // further computations. + storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(this->getModel(), this->getModel().getTransitionMatrix().notZero(), phiStates, psiStates); + STORM_LOG_INFO("Found " << statesWithProbabilityGreater0.getNonZeroCount() << " states with probability greater 0."); + storm::dd::Bdd<DdType> statesWithProbabilityGreater0NonPsi = statesWithProbabilityGreater0 && !psiStates; + STORM_LOG_INFO("Found " << statesWithProbabilityGreater0NonPsi.getNonZeroCount() << " 'maybe' states."); + + if (!statesWithProbabilityGreater0NonPsi.isZero()) { + if (comparator.isZero(upperBound)) { + // In this case, the interval is of the form [0, 0]. + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), psiStates.toAdd())); + } else { + if (comparator.isZero(lowerBound)) { + // In this case, the interval is of the form [0, t]. + // Note that this excludes [0, inf] since this is untimed reachability and we considered this case earlier. + + // Find the maximal rate of all 'maybe' states to take it as the uniformization rate. + ValueType uniformizationRate = 1.02 * (statesWithProbabilityGreater0NonPsi.toAdd() * exitRates).getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // Compute the uniformized matrix. + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, statesWithProbabilityGreater0NonPsi, uniformizationRate); + + // Compute the vector that is to be added as a compensation for removing the absorbing states. + storm::dd::Add<DdType> b = (statesWithProbabilityGreater0NonPsi.toAdd() * this->getModel().getTransitionMatrix() * psiStates.swapVariables(this->getModel().getRowColumnMetaVariablePairs()).toAdd()).sumAbstract(this->getModel().getColumnVariables()) / this->getModel().getManager().getConstant(uniformizationRate); + + // Create an ODD for the translation to an explicit representation. + storm::dd::Odd<DdType> odd(statesWithProbabilityGreater0NonPsi); + + // Convert the symbolic parts to their explicit representation. + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + std::vector<ValueType> explicitB = b.template toVector<ValueType>(odd); + + // Finally compute the transient probabilities. + std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNonZeroCount(), storm::utility::zero<ValueType>()); + std::vector<ValueType> subresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound, uniformizationRate, values, *this->linearEquationSolverFactory); + + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), + (psiStates || !statesWithProbabilityGreater0) && this->getModel().getReachableStates(), + psiStates.toAdd(), + statesWithProbabilityGreater0NonPsi, + odd, subresult)); + } else if (comparator.isInfinity(upperBound)) { + // In this case, the interval is of the form [t, inf] with t != 0. + + // Start by computing the (unbounded) reachability probabilities of reaching psi states while + // staying in phi states. + std::unique_ptr<CheckResult> unboundedResult = HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(this->getModel(), this->computeProbabilityMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), phiStates, psiStates, qualitative, *this->linearEquationSolverFactory); + + // Compute the set of relevant states. + storm::dd::Bdd<DdType> relevantStates = statesWithProbabilityGreater0 && phiStates; + + // Filter the unbounded result such that it only contains values for the relevant states. + unboundedResult->filter(SymbolicQualitativeCheckResult<DdType>(this->getModel().getReachableStates(), relevantStates)); + + // Build an ODD for the relevant states. + storm::dd::Odd<DdType> odd(relevantStates); + + std::vector<ValueType> result; + if (unboundedResult->isHybridQuantitativeCheckResult()) { + std::unique_ptr<CheckResult> explicitUnboundedResult = unboundedResult->asHybridQuantitativeCheckResult<DdType>().toExplicitQuantitativeCheckResult(); + result = std::move(explicitUnboundedResult->asExplicitQuantitativeCheckResult<ValueType>().getValueVector()); + } else { + STORM_LOG_THROW(unboundedResult->isSymbolicQuantitativeCheckResult(), storm::exceptions::InvalidStateException, "Expected check result of different type."); + result = unboundedResult->asSymbolicQuantitativeCheckResult<DdType>().getValueVector().template toVector<ValueType>(odd); + } + + // Determine the uniformization rate for the transient probability computation. + ValueType uniformizationRate = 1.02 * (relevantStates.toAdd() * exitRates).getMax(); + + // Compute the uniformized matrix. + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, relevantStates, uniformizationRate); + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + + // Compute the transient probabilities. + result = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, result, *this->linearEquationSolverFactory); + + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !relevantStates && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), relevantStates, odd, result)); + } else { + // In this case, the interval is of the form [t, t'] with t != 0 and t' != inf. + + if (lowerBound != upperBound) { + // In this case, the interval is of the form [t, t'] with t != 0, t' != inf and t != t'. + + // Find the maximal rate of all 'maybe' states to take it as the uniformization rate. + ValueType uniformizationRate = 1.02 * (statesWithProbabilityGreater0NonPsi.toAdd() * exitRates).getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // Compute the (first) uniformized matrix. + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, statesWithProbabilityGreater0NonPsi, uniformizationRate); + + // Create the one-step vector. + storm::dd::Add<DdType> b = (statesWithProbabilityGreater0NonPsi.toAdd() * this->getModel().getTransitionMatrix() * psiStates.swapVariables(this->getModel().getRowColumnMetaVariablePairs()).toAdd()).sumAbstract(this->getModel().getColumnVariables()) / this->getModel().getManager().getConstant(uniformizationRate); + + // Build an ODD for the relevant states and translate the symbolic parts to their explicit representation. + storm::dd::Odd<DdType> odd = storm::dd::Odd<DdType>(statesWithProbabilityGreater0NonPsi); + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + std::vector<ValueType> explicitB = b.template toVector<ValueType>(odd); + + // Compute the transient probabilities. + std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNonZeroCount(), storm::utility::zero<ValueType>()); + std::vector<ValueType> subResult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory); + + // Transform the explicit result to a hybrid check result, so we can easily convert it to + // a symbolic qualitative format. + HybridQuantitativeCheckResult<DdType> hybridResult(this->getModel().getReachableStates(), psiStates || (!statesWithProbabilityGreater0 && this->getModel().getReachableStates()), + psiStates.toAdd(), statesWithProbabilityGreater0NonPsi, odd, subResult); + + // Compute the set of relevant states. + storm::dd::Bdd<DdType> relevantStates = statesWithProbabilityGreater0 && phiStates; + + // Filter the unbounded result such that it only contains values for the relevant states. + hybridResult.filter(SymbolicQualitativeCheckResult<DdType>(this->getModel().getReachableStates(), relevantStates)); + + // Build an ODD for the relevant states. + odd = storm::dd::Odd<DdType>(relevantStates); + + std::unique_ptr<CheckResult> explicitResult = hybridResult.toExplicitQuantitativeCheckResult(); + std::vector<ValueType> newSubresult = std::move(explicitResult->asExplicitQuantitativeCheckResult<ValueType>().getValueVector()); + + // Then compute the transient probabilities of being in such a state after t time units. For this, + // we must re-uniformize the CTMC, so we need to compute the second uniformized matrix. + uniformizationRate = 1.02 * (relevantStates.toAdd() * exitRates).getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // If the lower and upper bounds coincide, we have only determined the relevant states at this + // point, but we still need to construct the starting vector. + if (lowerBound == upperBound) { + odd = storm::dd::Odd<DdType>(relevantStates); + newSubresult = psiStates.toAdd().template toVector<ValueType>(odd); + } + + // Finally, we compute the second set of transient probabilities. + uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, relevantStates, uniformizationRate); + explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + + newSubresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory); + + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !relevantStates && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), relevantStates, odd, newSubresult)); + } else { + // In this case, the interval is of the form [t, t] with t != 0, t != inf. + + // Build an ODD for the relevant states. + storm::dd::Odd<DdType> odd = storm::dd::Odd<DdType>(statesWithProbabilityGreater0); + + std::vector<ValueType> newSubresult = psiStates.toAdd().template toVector<ValueType>(odd); + + // Then compute the transient probabilities of being in such a state after t time units. For this, + // we must re-uniformize the CTMC, so we need to compute the second uniformized matrix. + ValueType uniformizationRate = 1.02 * (statesWithProbabilityGreater0.toAdd() * exitRates).getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // Finally, we compute the second set of transient probabilities. + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, statesWithProbabilityGreater0, uniformizationRate); + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + + newSubresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory); + + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !statesWithProbabilityGreater0 && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), statesWithProbabilityGreater0, odd, newSubresult)); + } + } + } + } else { + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), psiStates.toAdd())); + } + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + return this->computeInstantaneousRewardsHelper(rewardPathFormula.getContinuousTimeBound()); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(double timeBound) const { + // Only compute the result if the model has a state-based reward this->getModel(). + STORM_LOG_THROW(this->getModel().hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + + // Create ODD for the translation. + storm::dd::Odd<DdType> odd(this->getModel().getReachableStates()); + + // Initialize result to state rewards of the this->getModel(). + std::vector<ValueType> result = this->getModel().getStateRewardVector().template toVector<ValueType>(odd); + + // If the time-bound is not zero, we need to perform a transient analysis. + if (timeBound > 0) { + ValueType uniformizationRate = 1.02 * this->getModel().getExitRateVector().getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), this->getModel().getReachableStates(), uniformizationRate); + + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + result = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, result, *this->linearEquationSolverFactory); + } + + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), odd, result)); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + return this->computeCumulativeRewardsHelper(rewardPathFormula.getContinuousTimeBound()); + } + + template<storm::dd::DdType DdType, class ValueType> + std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(double timeBound) const { + // Only compute the result if the model has a state-based reward this->getModel(). + STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + + // If the time bound is zero, the result is the constant zero vector. + if (timeBound == 0) { + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getAddZero())); + } + + // Otherwise, we need to perform some computations. + + // Start with the uniformization. + ValueType uniformizationRate = 1.02 * this->getModel().getExitRateVector().getMax(); + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // Create ODD for the translation. + storm::dd::Odd<DdType> odd(this->getModel().getReachableStates()); + + // Compute the uniformized matrix. + storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), this->getModel().getReachableStates(), uniformizationRate); + storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd); + + // Then compute the state reward vector to use in the computation. + storm::dd::Add<DdType> totalRewardVector = this->getModel().hasStateRewards() ? this->getModel().getStateRewardVector() : this->getModel().getManager().getAddZero(); + if (this->getModel().hasTransitionRewards()) { + totalRewardVector += (this->getModel().getTransitionMatrix() * this->getModel().getTransitionRewardMatrix()).sumAbstract(this->getModel().getColumnVariables()); + } + std::vector<ValueType> explicitTotalRewardVector = totalRewardVector.template toVector<ValueType>(odd); + + // Finally, compute the transient probabilities. + std::vector<ValueType> result = SparseCtmcCslModelChecker<ValueType>::template computeTransientProbabilities<true>(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, explicitTotalRewardVector, *this->linearEquationSolverFactory); + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), odd, result)); + } + + // Explicitly instantiate the model checker. + template class HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double>; + + } // namespace modelchecker +} // namespace storm \ No newline at end of file diff --git a/src/modelchecker/csl/HybridCtmcCslModelChecker.h b/src/modelchecker/csl/HybridCtmcCslModelChecker.h new file mode 100644 index 000000000..f0e619533 --- /dev/null +++ b/src/modelchecker/csl/HybridCtmcCslModelChecker.h @@ -0,0 +1,65 @@ +#ifndef STORM_MODELCHECKER_HYBRIDCTMCCSLMODELCHECKER_H_ +#define STORM_MODELCHECKER_HYBRIDCTMCCSLMODELCHECKER_H_ + +#include "src/modelchecker/propositional/SymbolicPropositionalModelChecker.h" +#include "src/models/symbolic/Ctmc.h" +#include "src/utility/solver.h" +#include "src/solver/LinearEquationSolver.h" + +namespace storm { + namespace modelchecker { + + template<storm::dd::DdType DdType, class ValueType> + class HybridCtmcCslModelChecker : public SymbolicPropositionalModelChecker<DdType> { + public: + explicit HybridCtmcCslModelChecker(storm::models::symbolic::Ctmc<DdType> const& model); + explicit HybridCtmcCslModelChecker(storm::models::symbolic::Ctmc<DdType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory); + + // The implemented methods of the AbstractModelChecker interface. + virtual bool canHandle(storm::logic::Formula const& formula) const override; + virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + + protected: + storm::models::symbolic::Ctmc<DdType> const& getModel() const override; + + private: + /*! + * Converts the given rate-matrix into a time-abstract probability matrix. + * + * @param model The symbolic model. + * @param rateMatrix The rate matrix. + * @param exitRateVector The exit rate vector of the model. + * @return The probability matrix. + */ + static storm::dd::Add<DdType> computeProbabilityMatrix(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& rateMatrix, storm::dd::Add<DdType> const& exitRateVector); + + /*! + * Computes the matrix representing the transitions of the uniformized CTMC. + * + * @param model The symbolic model. + * @param transitionMatrix The matrix to uniformize. + * @param exitRateVector The exit rate vector. + * @param maybeStates The states that need to be considered. + * @param uniformizationRate The rate to be used for uniformization. + * @return The uniformized matrix. + */ + static storm::dd::Add<DdType> computeUniformizedMatrix(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Add<DdType> const& exitRateVector, storm::dd::Bdd<DdType> const& maybeStates, ValueType uniformizationRate); + + // The methods that perform the actual checking. + std::unique_ptr<CheckResult> computeBoundedUntilProbabilitiesHelper(storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, storm::dd::Add<DdType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const; + std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(double timeBound) const; + std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(double timeBound) const; + + // An object that is used for solving linear equations and performing matrix-vector multiplication. + std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>> linearEquationSolverFactory; + }; + + } // namespace modelchecker +} // namespace storm + +#endif /* STORM_MODELCHECKER_HYBRIDCTMCCSLMODELCHECKER_H_ */ diff --git a/src/modelchecker/csl/SparseCtmcCslModelChecker.cpp b/src/modelchecker/csl/SparseCtmcCslModelChecker.cpp index 74540327b..ecd550f4c 100644 --- a/src/modelchecker/csl/SparseCtmcCslModelChecker.cpp +++ b/src/modelchecker/csl/SparseCtmcCslModelChecker.cpp @@ -49,9 +49,7 @@ namespace storm { upperBound = pathFormula.getDiscreteTimeBound(); } - std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), qualitative, lowerBound, upperBound))); - - return result; + return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), qualitative, lowerBound, upperBound))); } template<class ValueType> @@ -140,8 +138,7 @@ namespace storm { result = this->computeUntilProbabilitiesHelper(this->getModel().getTransitionMatrix(), backwardTransitions, phiStates, psiStates, qualitative, *this->linearEquationSolverFactory); // Determine the set of states that must be considered further. - storm::storage::BitVector relevantStates = storm::utility::vector::filterGreaterZero(result); - relevantStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, relevantStates & phiStates); + storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates; std::vector<ValueType> subResult(relevantStates.getNumberOfSetBits()); storm::utility::vector::selectVectorValues(subResult, relevantStates, result); @@ -164,17 +161,11 @@ namespace storm { } else { // In this case, the interval is of the form [t, t'] with t != 0 and t' != inf. - // Prepare some variables that are used by the two following blocks. - storm::storage::BitVector relevantStates; - ValueType uniformizationRate = 0; - storm::storage::SparseMatrix<ValueType> uniformizedMatrix; - std::vector<ValueType> newSubresult; - - if (lowerBound == upperBound) { - relevantStates = statesWithProbabilityGreater0; - } else { + if (lowerBound != upperBound) { + // In this case, the interval is of the form [t, t'] with t != 0, t' != inf and t != t'. + // Find the maximal rate of all 'maybe' states to take it as the uniformization rate. - uniformizationRate = 0; + ValueType uniformizationRate = storm::utility::zero<ValueType>(); for (auto const& state : statesWithProbabilityGreater0NonPsi) { uniformizationRate = std::max(uniformizationRate, exitRates[state]); } @@ -182,7 +173,7 @@ namespace storm { STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); // Compute the (first) uniformized matrix. - uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates); + storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates); // Compute the vector that is to be added as a compensation for removing the absorbing states. std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates); @@ -192,40 +183,54 @@ namespace storm { // Start by computing the transient probabilities of reaching a psi state in time t' - t. std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>()); - std::vector<ValueType> subresult = this->computeTransientProbabilities(uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory); + std::vector<ValueType> subresult = computeTransientProbabilities(uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory); - // Determine the set of states that must be considered further. - relevantStates = storm::utility::vector::filterGreaterZero(subresult); - relevantStates = storm::utility::graph::performProbGreater0(uniformizedMatrix.transpose(), phiStates % statesWithProbabilityGreater0NonPsi, relevantStates & (phiStates % statesWithProbabilityGreater0NonPsi)); + storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates; + std::vector<ValueType> newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits()); + storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult); + storm::utility::vector::setVectorValues(newSubresult, psiStates % relevantStates, storm::utility::one<ValueType>()); + + // Then compute the transient probabilities of being in such a state after t time units. For this, + // we must re-uniformize the CTMC, so we need to compute the second uniformized matrix. + uniformizationRate = storm::utility::zero<ValueType>(); + for (auto const& state : relevantStates) { + uniformizationRate = std::max(uniformizationRate, exitRates[state]); + } + uniformizationRate *= 1.02; + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); - newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits()); - storm::utility::vector::selectVectorValues(newSubresult, relevantStates, subresult); - } - - // Then compute the transient probabilities of being in such a state after t time units. For this, - // we must re-uniformize the CTMC, so we need to compute the second uniformized matrix. - uniformizationRate = 0; - for (auto const& state : relevantStates) { - uniformizationRate = std::max(uniformizationRate, exitRates[state]); - } - uniformizationRate *= 1.02; - STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); - - // If the lower and upper bounds coincide, we have only determined the relevant states at this - // point, but we still need to construct the starting vector. - if (lowerBound == upperBound) { - newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits()); + // Finally, we compute the second set of transient probabilities. + uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), relevantStates, uniformizationRate, exitRates); + newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory); + + // Fill in the correct values. + result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>()); + storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>()); + storm::utility::vector::setVectorValues(result, relevantStates, newSubresult); + } else { + // In this case, the interval is of the form [t, t] with t != 0, t != inf. + + std::vector<ValueType> newSubresult = std::vector<ValueType>(statesWithProbabilityGreater0.getNumberOfSetBits()); storm::utility::vector::setVectorValues(newSubresult, psiStates % statesWithProbabilityGreater0, storm::utility::one<ValueType>()); + + // Then compute the transient probabilities of being in such a state after t time units. For this, + // we must re-uniformize the CTMC, so we need to compute the second uniformized matrix. + ValueType uniformizationRate = storm::utility::zero<ValueType>(); + for (auto const& state : statesWithProbabilityGreater0) { + uniformizationRate = std::max(uniformizationRate, exitRates[state]); + } + uniformizationRate *= 1.02; + STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive."); + + // Finally, we compute the second set of transient probabilities. + storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0, uniformizationRate, exitRates); + newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory); + + // Fill in the correct values. + result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>()); + storm::utility::vector::setVectorValues(result, ~statesWithProbabilityGreater0, storm::utility::zero<ValueType>()); + storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, newSubresult); } - - // Finally, we compute the second set of transient probabilities. - uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), relevantStates, uniformizationRate, exitRates); - newSubresult = this->computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory); - - // Fill in the correct values. - result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>()); - storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>()); - storm::utility::vector::setVectorValues(result, relevantStates, newSubresult); } } } @@ -249,7 +254,7 @@ namespace storm { for (auto const& state : maybeStates) { for (auto& element : uniformizedMatrix.getRow(currentRow)) { if (element.getColumn() == currentRow) { - element.setValue(-(exitRates[state] - element.getValue()) / uniformizationRate + storm::utility::one<ValueType>()); + element.setValue((element.getValue() - exitRates[state]) / uniformizationRate + storm::utility::one<ValueType>()); } else { element.setValue(element.getValue() / uniformizationRate); } @@ -262,7 +267,7 @@ namespace storm { template<class ValueType> template<bool computeCumulativeReward> - std::vector<ValueType> SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) const { + std::vector<ValueType> SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { ValueType lambda = timeBound * uniformizationRate; @@ -307,7 +312,7 @@ namespace storm { if (computeCumulativeReward) { result = std::vector<ValueType>(values.size()); std::function<ValueType (ValueType const&)> scaleWithUniformizationRate = [&uniformizationRate] (ValueType const& a) -> ValueType { return a / uniformizationRate; }; - storm::utility::vector::applyPointwise(result, result, scaleWithUniformizationRate); + storm::utility::vector::applyPointwise(values, result, scaleWithUniformizationRate); } else { result = std::vector<ValueType>(values.size()); } @@ -339,7 +344,7 @@ namespace storm { weight = std::get<3>(foxGlynnResult)[index - std::get<0>(foxGlynnResult)]; storm::utility::vector::applyPointwise(result, values, result, addAndScale); } - + return result; } @@ -440,6 +445,7 @@ namespace storm { boost::optional<std::vector<ValueType>> modifiedStateRewardVector; if (this->getModel().hasStateRewards()) { modifiedStateRewardVector = std::vector<ValueType>(this->getModel().getStateRewardVector()); + typename std::vector<ValueType>::const_iterator it2 = this->getModel().getExitRateVector().begin(); for (typename std::vector<ValueType>::iterator it1 = modifiedStateRewardVector.get().begin(), ite1 = modifiedStateRewardVector.get().end(); it1 != ite1; ++it1, ++it2) { *it1 /= *it2; diff --git a/src/modelchecker/csl/SparseCtmcCslModelChecker.h b/src/modelchecker/csl/SparseCtmcCslModelChecker.h index b74967ac5..5108a183f 100644 --- a/src/modelchecker/csl/SparseCtmcCslModelChecker.h +++ b/src/modelchecker/csl/SparseCtmcCslModelChecker.h @@ -3,15 +3,21 @@ #include "src/modelchecker/propositional/SparsePropositionalModelChecker.h" #include "src/models/sparse/Ctmc.h" +#include "src/storage/dd/DdType.h" #include "src/utility/solver.h" #include "src/solver/LinearEquationSolver.h" namespace storm { namespace modelchecker { + template<storm::dd::DdType DdType, typename ValueType> + class HybridCtmcCslModelChecker; + template<class ValueType> class SparseCtmcCslModelChecker : public SparsePropositionalModelChecker<ValueType> { public: + friend class HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, ValueType>; + explicit SparseCtmcCslModelChecker(storm::models::sparse::Ctmc<ValueType> const& model); explicit SparseCtmcCslModelChecker(storm::models::sparse::Ctmc<ValueType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory); @@ -33,7 +39,6 @@ namespace storm { static std::vector<ValueType> computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); std::vector<ValueType> computeInstantaneousRewardsHelper(double timeBound) const; std::vector<ValueType> computeCumulativeRewardsHelper(double timeBound) const; - std::vector<ValueType> computeReachabilityRewardsHelper(storm::storage::BitVector const& targetStates, bool qualitative) const; /*! * Computes the matrix representing the transitions of the uniformized CTMC. @@ -61,7 +66,7 @@ namespace storm { * @return The vector of transient probabilities. */ template<bool useMixedPoissonProbabilities = false> - std::vector<ValueType> computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) const; + static std::vector<ValueType> computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); /*! * Converts the given rate-matrix into a time-abstract probability matrix. diff --git a/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp b/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp index 4ddda3339..25a02adff 100644 --- a/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp +++ b/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp @@ -231,13 +231,14 @@ namespace storm { std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); - return this->computeReachabilityRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative); + return this->computeReachabilityRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative); } template<storm::dd::DdType DdType, typename ValueType> - std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) { - // Only compute the result if the model has at least one reward model. - STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) { + + // Only compute the result if there is at least one reward model. + STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Determine which states have a reward of infinity by definition. storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates); @@ -246,7 +247,7 @@ namespace storm { STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); - + // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values @@ -266,9 +267,9 @@ namespace storm { storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; // Then compute the state reward vector to use in the computation. - storm::dd::Add<DdType> subvector = model.hasStateRewards() ? maybeStatesAdd * model.getStateRewardVector() : model.getManager().getAddZero(); - if (model.hasTransitionRewards()) { - subvector += (submatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables()); + storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero(); + if (transitionRewardMatrix) { + subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables()); } // Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed diff --git a/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h b/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h index bb7a263a9..b3ab51279 100644 --- a/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h +++ b/src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h @@ -7,9 +7,14 @@ namespace storm { namespace modelchecker { + template<storm::dd::DdType DdType, typename ValueType> + class HybridCtmcCslModelChecker; + template<storm::dd::DdType DdType, typename ValueType> class HybridDtmcPrctlModelChecker : public SymbolicPropositionalModelChecker<DdType> { public: + friend class HybridCtmcCslModelChecker<DdType, ValueType>; + explicit HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model); explicit HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory); @@ -32,7 +37,7 @@ namespace storm { static std::unique_ptr<CheckResult> computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); - static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative); + static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative); // An object that is used for retrieving linear equation solvers. std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>> linearEquationSolverFactory; diff --git a/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp new file mode 100644 index 000000000..f54bed203 --- /dev/null +++ b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp @@ -0,0 +1,330 @@ +#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" + +#include "src/storage/dd/CuddOdd.h" + +#include "src/utility/macros.h" +#include "src/utility/graph.h" + +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" + +#include "src/exceptions/InvalidStateException.h" +#include "src/exceptions/InvalidPropertyException.h" + +namespace storm { + namespace modelchecker { + template<storm::dd::DdType DdType, typename ValueType> + HybridMdpPrctlModelChecker<DdType, ValueType>::HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp<DdType> const& model, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) { + // Intentionally left empty. + } + + template<storm::dd::DdType DdType, typename ValueType> + HybridMdpPrctlModelChecker<DdType, ValueType>::HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp<DdType> const& model) : SymbolicPropositionalModelChecker<DdType>(model), linearEquationSolverFactory(new storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>()) { + // Intentionally left empty. + } + + template<storm::dd::DdType DdType, typename ValueType> + bool HybridMdpPrctlModelChecker<DdType, ValueType>::canHandle(storm::logic::Formula const& formula) const { + return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula(); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { + // We need to identify the states which have to be taken out of the matrix, i.e. all states that have + // probability 0 and 1 of satisfying the until-formula. + std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01; + if (minimize) { + statesWithProbability01 = storm::utility::graph::performProb01Min(model, phiStates, psiStates); + } else { + statesWithProbability01 = storm::utility::graph::performProb01Max(model, phiStates, psiStates); + } + storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates(); + + // Perform some logging. + STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states."); + STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states."); + STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); + + // Check whether we need to compute exact probabilities for some states. + if (qualitative) { + // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. + return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5))); + } else { + // If there are maybe states, we need to solve an equation system. + if (!maybeStates.isZero()) { + // Create the ODD for the translation between symbolic and explicit storage. + storm::dd::Odd<DdType> odd(maybeStates); + + // Create the matrix and the vector for the equation system. + storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); + + // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting + // non-maybe states in the matrix. + storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; + + // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all + // maybe states. + storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd(); + prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs()); + storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn; + subvector = subvector.sumAbstract(model.getColumnVariables()); + + // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. + std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd); + + // Finally cut away all columns targeting non-maybe states. + submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); + + // Create the solution vector. + std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5)); + + // Translate the symbolic matrix/vector to their explicit representations and solve the equation system. + std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); + + std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first); + solver->solveEquationSystem(minimize, x, explicitRepresentation.second); + + // Return a hybrid check result that stores the numerical values explicitly. + return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x)); + } else { + return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd())); + } + } + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); + std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); + SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + return this->computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); + SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector()))); + } + + template<storm::dd::DdType DdType, typename ValueType> + storm::dd::Add<DdType> HybridMdpPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) { + storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd(); + return result.sumAbstract(model.getColumnVariables()); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); + std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); + std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); + SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + return this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { + // We need to identify the states which have to be taken out of the matrix, i.e. all states that have + // probability 0 or 1 of satisfying the until-formula. + storm::dd::Bdd<DdType> statesWithProbabilityGreater0; + if (minimize) { + statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model, transitionMatrix.notZero(), phiStates, psiStates); + } else { + statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates); + } + storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates(); + + // If there are maybe states, we need to perform matrix-vector multiplications. + if (!maybeStates.isZero()) { + // Create the ODD for the translation between symbolic and explicit storage. + storm::dd::Odd<DdType> odd(maybeStates); + + // Create the matrix and the vector for the equation system. + storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); + + // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting + // non-maybe states in the matrix. + storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; + + // Then compute the vector that contains the one-step probabilities to a state with probability 1 for all + // maybe states. + storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs()); + storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables()); + + // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. + std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd); + + // Finally cut away all columns targeting non-maybe states. + submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); + + // Create the solution vector. + std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>()); + + // Translate the symbolic matrix/vector to their explicit representations. + std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); + + std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first); + solver->performMatrixVectorMultiplication(minimize, x, &explicitRepresentation.second, stepBound); + + // Return a hybrid check result that stores the numerical values explicitly. + return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x)); + } else { + return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd())); + } + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); + return this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { + // Only compute the result if the model has at least one reward this->getModel(). + STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + + // Compute the reward vector to add in each step based on the available reward models. + storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero(); + if (model.hasTransitionRewards()) { + totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables()); + } + + // Create the ODD for the translation between symbolic and explicit storage. + storm::dd::Odd<DdType> odd(model.getReachableStates()); + + // Create the solution vector. + std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>()); + + // Translate the symbolic matrix/vector to their explicit representations. + storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd); + std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices()); + + // Perform the matrix-vector multiplication. + std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix); + solver->performMatrixVectorMultiplication(minimize, x, &b, stepBound); + + // Return a hybrid check result that stores the numerical values explicitly. + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); + return this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { + // Only compute the result if the model has at least one reward this->getModel(). + STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + + // Create the ODD for the translation between symbolic and explicit storage. + storm::dd::Odd<DdType> odd(model.getReachableStates()); + + // Translate the symbolic matrix to its explicit representations. + storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd); + + // Create the solution vector (and initialize it to the state rewards of the model). + std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices()); + + // Perform the matrix-vector multiplication. + std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix); + solver->performMatrixVectorMultiplication(minimize, x, nullptr, stepBound); + + // Return a hybrid check result that stores the numerical values explicitly. + return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x)); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); + SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>(); + return this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative); + } + + template<storm::dd::DdType DdType, typename ValueType> + std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) { + + // Only compute the result if there is at least one reward model. + STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); + + // Determine which states have a reward of infinity by definition. + storm::dd::Bdd<DdType> infinityStates; + storm::dd::Bdd<DdType> transitionMatrixBdd = transitionMatrix.notZero(); + if (minimize) { + infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); + } else { + infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates)); + } + infinityStates = !infinityStates && model.getReachableStates(); + storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates(); + STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states."); + STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states."); + STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states."); + + // Check whether we need to compute exact rewards for some states. + if (qualitative) { + // Set the values for all maybe-states to 1 to indicate that their reward values + // are neither 0 nor infinity. + return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>()))); + } else { + // If there are maybe states, we need to solve an equation system. + if (!maybeStates.isZero()) { + // Create the ODD for the translation between symbolic and explicit storage. + storm::dd::Odd<DdType> odd(maybeStates); + + // Create the matrix and the vector for the equation system. + storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd(); + + // Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting + // non-maybe states in the matrix. + storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd; + + // Then compute the state reward vector to use in the computation. + storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero(); + if (transitionRewardMatrix) { + subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables()); + } + + // Before cutting the non-maybe columns, we need to compute the sizes of the row groups. + std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd); + + // Finally cut away all columns targeting non-maybe states. + submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs()); + + // Create the solution vector. + std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5)); + + // Translate the symbolic matrix/vector to their explicit representations. + std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd); + + // Now solve the resulting equation system. + std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first); + solver->solveEquationSystem(minimize, x, explicitRepresentation.second); + + // Return a hybrid check result that stores the numerical values explicitly. + return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x)); + } else { + return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()))); + } + } + } + + template<storm::dd::DdType DdType, typename ValueType> + storm::models::symbolic::Mdp<DdType> const& HybridMdpPrctlModelChecker<DdType, ValueType>::getModel() const { + return this->template getModelAs<storm::models::symbolic::Mdp<DdType>>(); + } + + template class HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double>; + } +} \ No newline at end of file diff --git a/src/modelchecker/prctl/HybridMdpPrctlModelChecker.h b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.h new file mode 100644 index 000000000..24a33ee79 --- /dev/null +++ b/src/modelchecker/prctl/HybridMdpPrctlModelChecker.h @@ -0,0 +1,44 @@ +#ifndef STORM_MODELCHECKER_HYBRIDMDPPRCTLMODELCHECKER_H_ +#define STORM_MODELCHECKER_HYBRIDMDPPRCTLMODELCHECKER_H_ + +#include "src/modelchecker/propositional/SymbolicPropositionalModelChecker.h" +#include "src/models/symbolic/Mdp.h" +#include "src/utility/solver.h" + +namespace storm { + namespace modelchecker { + template<storm::dd::DdType DdType, typename ValueType> + class HybridMdpPrctlModelChecker : public SymbolicPropositionalModelChecker<DdType> { + public: + explicit HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp<DdType> const& model); + explicit HybridMdpPrctlModelChecker(storm::models::symbolic::Mdp<DdType> const& model, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory); + + // The implemented methods of the AbstractModelChecker interface. + virtual bool canHandle(storm::logic::Formula const& formula) const override; + virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override; + + protected: + storm::models::symbolic::Mdp<DdType> const& getModel() const override; + + private: + // The methods that perform the actual checking. + static std::unique_ptr<CheckResult> computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); + static storm::dd::Add<DdType> computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates); + static std::unique_ptr<CheckResult> computeUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); + static std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); + static std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); + static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative); + + // An object that is used for retrieving linear equation solvers. + std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>> linearEquationSolverFactory; + }; + + } // namespace modelchecker +} // namespace storm + +#endif /* STORM_MODELCHECKER_HYBRIDMDPPRCTLMODELCHECKER_H_ */ diff --git a/src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp b/src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp index 8f63110c8..f16951d12 100644 --- a/src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp +++ b/src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp @@ -251,7 +251,7 @@ namespace storm { // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); - + // Initialize the x vector with 1 for each element. This is the initial guess for // the iterative solvers. std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>()); diff --git a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp index 0a9007c22..518d21972 100644 --- a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp +++ b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp @@ -72,7 +72,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); @@ -96,7 +96,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector()))); @@ -166,7 +166,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); @@ -206,7 +206,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound()))); } @@ -228,7 +228,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound."); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound()))); } @@ -303,6 +303,7 @@ namespace storm { std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory.create(submatrix); solver->solveEquationSystem(minimize, x, b); + // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } @@ -316,7 +317,7 @@ namespace storm { template<typename ValueType> std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) { - STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic."); + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *this->MinMaxLinearEquationSolverFactory, qualitative))); diff --git a/src/modelchecker/propositional/SymbolicPropositionalModelChecker.cpp b/src/modelchecker/propositional/SymbolicPropositionalModelChecker.cpp index 1552235d9..4fa0dbafe 100644 --- a/src/modelchecker/propositional/SymbolicPropositionalModelChecker.cpp +++ b/src/modelchecker/propositional/SymbolicPropositionalModelChecker.cpp @@ -1,6 +1,7 @@ #include "src/modelchecker/propositional/SymbolicPropositionalModelChecker.h" #include "src/models/symbolic/Dtmc.h" +#include "src/models/symbolic/Ctmc.h" #include "src/models/symbolic/Mdp.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" @@ -48,6 +49,7 @@ namespace storm { // Explicitly instantiate the template class. template storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD> const& SymbolicPropositionalModelChecker<storm::dd::DdType::CUDD>::getModelAs() const; + template storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD> const& SymbolicPropositionalModelChecker<storm::dd::DdType::CUDD>::getModelAs() const; template storm::models::symbolic::Mdp<storm::dd::DdType::CUDD> const& SymbolicPropositionalModelChecker<storm::dd::DdType::CUDD>::getModelAs() const; template class SymbolicPropositionalModelChecker<storm::dd::DdType::CUDD>; } diff --git a/src/modelchecker/results/HybridQuantitativeCheckResult.cpp b/src/modelchecker/results/HybridQuantitativeCheckResult.cpp index 8132b75b6..abf56e163 100644 --- a/src/modelchecker/results/HybridQuantitativeCheckResult.cpp +++ b/src/modelchecker/results/HybridQuantitativeCheckResult.cpp @@ -1,5 +1,6 @@ #include "src/modelchecker/results/HybridQuantitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "src/storage/dd/CuddDdManager.h" #include "src/exceptions/InvalidOperationException.h" @@ -32,6 +33,16 @@ namespace storm { return std::unique_ptr<SymbolicQualitativeCheckResult<Type>>(new SymbolicQualitativeCheckResult<Type>(reachableStates, symbolicResult)); } + template<storm::dd::DdType Type> + std::unique_ptr<CheckResult> HybridQuantitativeCheckResult<Type>::toExplicitQuantitativeCheckResult() const { + storm::dd::Bdd<Type> allStates = symbolicStates || explicitStates; + storm::dd::Odd<Type> allStatesOdd(allStates); + + std::vector<double> fullExplicitValues = symbolicValues.template toVector<double>(allStatesOdd); + this->odd.expandExplicitVector(allStatesOdd, this->explicitValues, fullExplicitValues); + return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<double>(std::move(fullExplicitValues))); + } + template<storm::dd::DdType Type> bool HybridQuantitativeCheckResult<Type>::isHybrid() const { return true; @@ -139,7 +150,7 @@ namespace storm { template<storm::dd::DdType Type> double HybridQuantitativeCheckResult<Type>::getMax() const { - double max = this->symbolicValues.getMin(); + double max = this->symbolicValues.getMax(); if (!explicitStates.isZero()) { for (auto const& element : explicitValues) { max = std::max(max, element); diff --git a/src/modelchecker/results/HybridQuantitativeCheckResult.h b/src/modelchecker/results/HybridQuantitativeCheckResult.h index 160bbbb6d..05033f78f 100644 --- a/src/modelchecker/results/HybridQuantitativeCheckResult.h +++ b/src/modelchecker/results/HybridQuantitativeCheckResult.h @@ -25,6 +25,8 @@ namespace storm { virtual std::unique_ptr<CheckResult> compareAgainstBound(storm::logic::ComparisonType comparisonType, double bound) const override; + std::unique_ptr<CheckResult> toExplicitQuantitativeCheckResult() const; + virtual bool isHybrid() const override; virtual bool isResultForAllStates() const override; diff --git a/src/models/symbolic/Ctmc.cpp b/src/models/symbolic/Ctmc.cpp index b90aa5afd..01f4cb4d7 100644 --- a/src/models/symbolic/Ctmc.cpp +++ b/src/models/symbolic/Ctmc.cpp @@ -18,7 +18,12 @@ namespace storm { boost::optional<storm::dd::Add<Type>> const& optionalStateRewardVector, boost::optional<storm::dd::Add<Type>> const& optionalTransitionRewardMatrix) : DeterministicModel<Type>(storm::models::ModelType::Ctmc, manager, reachableStates, initialStates, transitionMatrix, rowVariables, rowExpressionAdapter, columnVariables, columnExpressionAdapter, rowColumnMetaVariablePairs, labelToExpressionMap, optionalStateRewardVector, optionalTransitionRewardMatrix) { - // Intentionally left empty. + exitRates = this->getTransitionMatrix().sumAbstract(this->getColumnVariables()); + } + + template<storm::dd::DdType Type> + storm::dd::Add<Type> const& Ctmc<Type>::getExitRateVector() const { + return exitRates; } // Explicitly instantiate the template class. diff --git a/src/models/symbolic/Ctmc.h b/src/models/symbolic/Ctmc.h index 7d46dcd73..e2f975f76 100644 --- a/src/models/symbolic/Ctmc.h +++ b/src/models/symbolic/Ctmc.h @@ -52,6 +52,16 @@ namespace storm { std::map<std::string, storm::expressions::Expression> labelToExpressionMap = std::map<std::string, storm::expressions::Expression>(), boost::optional<storm::dd::Add<Type>> const& optionalStateRewardVector = boost::optional<storm::dd::Dd<Type>>(), boost::optional<storm::dd::Add<Type>> const& optionalTransitionRewardMatrix = boost::optional<storm::dd::Dd<Type>>()); + + /*! + * Retrieves the exit rate vector of the CTMC. + * + * @return The exit rate vector. + */ + storm::dd::Add<Type> const& getExitRateVector() const; + + private: + storm::dd::Add<Type> exitRates; }; } // namespace symbolic diff --git a/src/models/symbolic/Model.cpp b/src/models/symbolic/Model.cpp index 0fe4f0d13..8b72f3687 100644 --- a/src/models/symbolic/Model.cpp +++ b/src/models/symbolic/Model.cpp @@ -87,11 +87,21 @@ namespace storm { return transitionRewardMatrix.get(); } + template<storm::dd::DdType Type> + boost::optional<storm::dd::Add<Type>> const& Model<Type>::getOptionalTransitionRewardMatrix() const { + return transitionRewardMatrix; + } + template<storm::dd::DdType Type> storm::dd::Add<Type> const& Model<Type>::getStateRewardVector() const { return stateRewardVector.get(); } + template<storm::dd::DdType Type> + boost::optional<storm::dd::Add<Type>> const& Model<Type>::getOptionalStateRewardVector() const { + return stateRewardVector; + } + template<storm::dd::DdType Type> bool Model<Type>::hasStateRewards() const { return static_cast<bool>(stateRewardVector); diff --git a/src/models/symbolic/Model.h b/src/models/symbolic/Model.h index 211a4cc66..23d2030f3 100644 --- a/src/models/symbolic/Model.h +++ b/src/models/symbolic/Model.h @@ -134,6 +134,13 @@ namespace storm { */ storm::dd::Add<Type>& getTransitionMatrix(); + /*! + * Retrieves the (optional) matrix representing the transition rewards of the model. + * + * @return The matrix representing the transition rewards of the model. + */ + boost::optional<storm::dd::Add<Type>> const& getOptionalTransitionRewardMatrix() const; + /*! * Retrieves the matrix representing the transition rewards of the model. Note that calling this method * is only valid if the model has transition rewards. @@ -157,6 +164,13 @@ namespace storm { * @return A vector representing the state rewards of the model. */ storm::dd::Add<Type> const& getStateRewardVector() const; + + /*! + * Retrieves an (optional) vector representing the state rewards of the model. + * + * @return A vector representing the state rewards of the model. + */ + boost::optional<storm::dd::Add<Type>> const& getOptionalStateRewardVector() const; /*! * Retrieves whether this model has state rewards. diff --git a/src/settings/Argument.h b/src/settings/Argument.h index c697fdb45..7aad2c048 100644 --- a/src/settings/Argument.h +++ b/src/settings/Argument.h @@ -73,12 +73,12 @@ namespace storm { return this->setFromTypeValue(newValue); } - bool setFromTypeValue(T const& newValue) { + bool setFromTypeValue(T const& newValue, bool hasBeenSet = true) { if (!this->validate(newValue)) { return false; } this->argumentValue = newValue; - this->hasBeenSet = true; + this->hasBeenSet = hasBeenSet; return true; } @@ -120,7 +120,7 @@ namespace storm { void setFromDefaultValue() override { STORM_LOG_THROW(this->hasDefaultValue, storm::exceptions::IllegalFunctionCallException, "Unable to set value from default value, because the argument has none."); - bool result = this->setFromTypeValue(this->defaultValue); + bool result = this->setFromTypeValue(this->defaultValue, false); STORM_LOG_THROW(result, storm::exceptions::IllegalArgumentValueException, "Unable to assign default value to argument, because it was rejected."); } diff --git a/src/storage/dd/CuddAdd.cpp b/src/storage/dd/CuddAdd.cpp index 8152083cd..6b7f2067f 100644 --- a/src/storage/dd/CuddAdd.cpp +++ b/src/storage/dd/CuddAdd.cpp @@ -424,7 +424,47 @@ namespace storm { std::vector<ValueType> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const { std::vector<ValueType> result(rowOdd.getTotalOffset()); std::vector<uint_fast64_t> ddVariableIndices = this->getSortedVariableIndices(); - addToVectorRec(this->getCuddDdNode(), 0, ddVariableIndices.size(), 0, rowOdd, ddVariableIndices, result); + addToVector(rowOdd, ddVariableIndices, result); + return result; + } + + template<typename ValueType> + std::vector<ValueType> Add<DdType::CUDD>::toVector(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, std::vector<uint_fast64_t> groupOffsets) const { + std::set<storm::expressions::Variable> rowMetaVariables; + + // Prepare the proper sets of meta variables. + for (auto const& variable : this->getContainedMetaVariables()) { + if (groupMetaVariables.find(variable) != groupMetaVariables.end()) { + continue; + } + + rowMetaVariables.insert(variable); + } + std::vector<uint_fast64_t> ddGroupVariableIndices; + for (auto const& variable : groupMetaVariables) { + DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); + for (auto const& ddVariable : metaVariable.getDdVariables()) { + ddGroupVariableIndices.push_back(ddVariable.getIndex()); + } + } + std::vector<uint_fast64_t> ddRowVariableIndices; + for (auto const& variable : rowMetaVariables) { + DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); + for (auto const& ddVariable : metaVariable.getDdVariables()) { + ddRowVariableIndices.push_back(ddVariable.getIndex()); + } + } + + // Start by splitting the symbolic vector into groups. + std::vector<Add<DdType::CUDD>> groups; + splitGroupsRec(this->getCuddDdNode(), groups, ddGroupVariableIndices, 0, ddGroupVariableIndices.size(), rowMetaVariables); + + // Now iterate over the groups and add them to the resulting vector. + std::vector<ValueType> result(groupOffsets.back(), storm::utility::zero<ValueType>()); + for (uint_fast64_t i = 0; i < groups.size(); ++i) { + toVectorRec(groups[i].getCuddDdNode(), result, groupOffsets, rowOdd, 0, ddRowVariableIndices.size(), 0, ddRowVariableIndices); + } + return result; } @@ -520,11 +560,33 @@ namespace storm { return storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(trivialRowGroupIndices)); } + storm::storage::SparseMatrix<double> Add<DdType::CUDD>::toMatrix(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const { + std::set<storm::expressions::Variable> rowMetaVariables; + std::set<storm::expressions::Variable> columnMetaVariables; + + for (auto const& variable : this->getContainedMetaVariables()) { + // If the meta variable is a group meta variable, we do not insert it into the set of row/column meta variables. + if (groupMetaVariables.find(variable) != groupMetaVariables.end()) { + continue; + } + + if (variable.getName().size() > 0 && variable.getName().back() == '\'') { + columnMetaVariables.insert(variable); + } else { + rowMetaVariables.insert(variable); + } + } + + // Create the canonical row group sizes and build the matrix. + return toMatrix(rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd); + } + storm::storage::SparseMatrix<double> Add<DdType::CUDD>::toMatrix(std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const { std::vector<uint_fast64_t> ddRowVariableIndices; std::vector<uint_fast64_t> ddColumnVariableIndices; std::vector<uint_fast64_t> ddGroupVariableIndices; std::set<storm::expressions::Variable> rowAndColumnMetaVariables; + boost::optional<std::vector<double>> optionalExplicitVector; for (auto const& variable : rowMetaVariables) { DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); @@ -550,8 +612,6 @@ namespace storm { } std::sort(ddGroupVariableIndices.begin(), ddGroupVariableIndices.end()); - // TODO: assert that the group variables are at the very top of the variable ordering? - // Start by computing the offsets (in terms of rows) for each row group. Add<DdType::CUDD> stateToNumberOfChoices = this->notZero().existsAbstract(columnMetaVariables).toAdd().sumAbstract(groupMetaVariables); std::vector<uint_fast64_t> rowGroupIndices = stateToNumberOfChoices.toVector<uint_fast64_t>(rowOdd); @@ -575,21 +635,22 @@ namespace storm { // Now compute the indices at which the individual rows start. std::vector<uint_fast64_t> rowIndications(rowGroupIndices.back() + 1); + std::vector<storm::dd::Add<DdType::CUDD>> statesWithGroupEnabled(groups.size()); + storm::dd::Add<storm::dd::DdType::CUDD> stateToRowGroupCount = this->getDdManager()->getAddZero(); for (uint_fast64_t i = 0; i < groups.size(); ++i) { auto const& dd = groups[i]; toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, false); statesWithGroupEnabled[i] = dd.notZero().existsAbstract(columnMetaVariables).toAdd(); - addToVectorRec(statesWithGroupEnabled[i].getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices); + stateToRowGroupCount += statesWithGroupEnabled[i]; + statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices); } // Since we modified the rowGroupIndices, we need to restore the correct values. - for (uint_fast64_t i = rowGroupIndices.size() - 1; i > 0; --i) { - rowGroupIndices[i] = rowGroupIndices[i - 1]; - } - rowGroupIndices[0] = 0; + std::function<uint_fast64_t (uint_fast64_t const&, double const&)> fct = [] (uint_fast64_t const& a, double const& b) -> uint_fast64_t { return a - static_cast<uint_fast64_t>(b); }; + modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct); // Now that we computed the number of entries in each row, compute the corresponding offsets in the entry vector. tmp = 0; @@ -607,22 +668,162 @@ namespace storm { toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, true); - addToVectorRec(statesWithGroupEnabled[i].getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices); + statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices); } // Since we modified the rowGroupIndices, we need to restore the correct values. - for (uint_fast64_t i = rowGroupIndices.size() - 1; i > 0; --i) { - rowGroupIndices[i] = rowGroupIndices[i - 1]; + modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct); + + // Since the last call to toMatrixRec modified the rowIndications, we need to restore the correct values. + for (uint_fast64_t i = rowIndications.size() - 1; i > 0; --i) { + rowIndications[i] = rowIndications[i - 1]; + } + rowIndications[0] = 0; + + return storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)); + } + + std::pair<storm::storage::SparseMatrix<double>, std::vector<double>> Add<DdType::CUDD>::toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const { + std::set<storm::expressions::Variable> rowMetaVariables; + std::set<storm::expressions::Variable> columnMetaVariables; + + for (auto const& variable : this->getContainedMetaVariables()) { + // If the meta variable is a group meta variable, we do not insert it into the set of row/column meta variables. + if (groupMetaVariables.find(variable) != groupMetaVariables.end()) { + continue; + } + + if (variable.getName().size() > 0 && variable.getName().back() == '\'') { + columnMetaVariables.insert(variable); + } else { + rowMetaVariables.insert(variable); + } + } + + // Create the canonical row group sizes and build the matrix. + return toMatrixVector(vector, std::move(rowGroupSizes), rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd); + } + + std::pair<storm::storage::SparseMatrix<double>,std::vector<double>> Add<DdType::CUDD>::toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupIndices, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const { + std::vector<uint_fast64_t> ddRowVariableIndices; + std::vector<uint_fast64_t> ddColumnVariableIndices; + std::vector<uint_fast64_t> ddGroupVariableIndices; + std::set<storm::expressions::Variable> rowAndColumnMetaVariables; + + for (auto const& variable : rowMetaVariables) { + DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); + for (auto const& ddVariable : metaVariable.getDdVariables()) { + ddRowVariableIndices.push_back(ddVariable.getIndex()); + } + rowAndColumnMetaVariables.insert(variable); + } + std::sort(ddRowVariableIndices.begin(), ddRowVariableIndices.end()); + for (auto const& variable : columnMetaVariables) { + DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); + for (auto const& ddVariable : metaVariable.getDdVariables()) { + ddColumnVariableIndices.push_back(ddVariable.getIndex()); + } + rowAndColumnMetaVariables.insert(variable); + } + std::sort(ddColumnVariableIndices.begin(), ddColumnVariableIndices.end()); + for (auto const& variable : groupMetaVariables) { + DdMetaVariable<DdType::CUDD> const& metaVariable = this->getDdManager()->getMetaVariable(variable); + for (auto const& ddVariable : metaVariable.getDdVariables()) { + ddGroupVariableIndices.push_back(ddVariable.getIndex()); + } + } + std::sort(ddGroupVariableIndices.begin(), ddGroupVariableIndices.end()); + + // Transform the row group sizes to the actual row group indices. + rowGroupIndices.resize(rowGroupIndices.size() + 1); + uint_fast64_t tmp = 0; + uint_fast64_t tmp2 = 0; + for (uint_fast64_t i = 1; i < rowGroupIndices.size(); ++i) { + tmp2 = rowGroupIndices[i]; + rowGroupIndices[i] = rowGroupIndices[i - 1] + tmp; + std::swap(tmp, tmp2); } rowGroupIndices[0] = 0; + // Create the explicit vector we need to fill later. + std::vector<double> explicitVector(rowGroupIndices.back()); + + // Next, we split the matrix into one for each group. This only works if the group variables are at the very + // top. + std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>> groups; + splitGroupsRec(this->getCuddDdNode(), vector.getCuddDdNode(), groups, ddGroupVariableIndices, 0, ddGroupVariableIndices.size(), rowAndColumnMetaVariables, rowMetaVariables); + + // Create the actual storage for the non-zero entries. + std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> columnsAndValues(this->getNonZeroCount()); + + // Now compute the indices at which the individual rows start. + std::vector<uint_fast64_t> rowIndications(rowGroupIndices.back() + 1); + + std::vector<storm::dd::Add<DdType::CUDD>> statesWithGroupEnabled(groups.size()); + storm::dd::Add<storm::dd::DdType::CUDD> stateToRowGroupCount = this->getDdManager()->getAddZero(); + for (uint_fast64_t i = 0; i < groups.size(); ++i) { + std::pair<storm::dd::Add<DdType::CUDD>, storm::dd::Add<DdType::CUDD>> ddPair = groups[i]; + + toMatrixRec(ddPair.first.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, false); + toVectorRec(ddPair.second.getCuddDdNode(), explicitVector, rowGroupIndices, rowOdd, 0, ddRowVariableIndices.size(), 0, ddRowVariableIndices); + + statesWithGroupEnabled[i] = (ddPair.first.notZero().existsAbstract(columnMetaVariables) || ddPair.second.notZero()).toAdd(); + stateToRowGroupCount += statesWithGroupEnabled[i]; + statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices); + } + + // Since we modified the rowGroupIndices, we need to restore the correct values. + std::function<uint_fast64_t (uint_fast64_t const&, double const&)> fct = [] (uint_fast64_t const& a, double const& b) -> uint_fast64_t { return a - static_cast<uint_fast64_t>(b); }; + modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct); + + // Now that we computed the number of entries in each row, compute the corresponding offsets in the entry vector. + tmp = 0; + tmp2 = 0; + for (uint_fast64_t i = 1; i < rowIndications.size(); ++i) { + tmp2 = rowIndications[i]; + rowIndications[i] = rowIndications[i - 1] + tmp; + std::swap(tmp, tmp2); + } + rowIndications[0] = 0; + + // Now actually fill the entry vector. + for (uint_fast64_t i = 0; i < groups.size(); ++i) { + auto const& dd = groups[i].first; + + toMatrixRec(dd.getCuddDdNode(), rowIndications, columnsAndValues, rowGroupIndices, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, true); + + statesWithGroupEnabled[i].addToVector(rowOdd, ddRowVariableIndices, rowGroupIndices); + } + + // Since we modified the rowGroupIndices, we need to restore the correct values. + modifyVectorRec(stateToRowGroupCount.getCuddDdNode(), 0, ddRowVariableIndices.size(), 0, rowOdd, ddRowVariableIndices, rowGroupIndices, fct); + // Since the last call to toMatrixRec modified the rowIndications, we need to restore the correct values. for (uint_fast64_t i = rowIndications.size() - 1; i > 0; --i) { rowIndications[i] = rowIndications[i - 1]; } rowIndications[0] = 0; - return storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)); + return std::make_pair(storm::storage::SparseMatrix<double>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)), std::move(explicitVector)); + } + + template<typename ValueType> + void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const { + // For the empty DD, we do not need to add any entries. + if (dd == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) { + return; + } + + // If we are at the maximal level, the value to be set is stored as a constant in the DD. + if (currentRowLevel == maxLevel) { + result[rowGroupOffsets[currentRowOffset]] = Cudd_V(dd); + } else if (ddRowVariableIndices[currentRowLevel] < dd->index) { + toVectorRec(dd, result, rowGroupOffsets, rowOdd.getElseSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices); + toVectorRec(dd, result, rowGroupOffsets, rowOdd.getThenSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices); + } else { + toVectorRec(Cudd_E(dd), result, rowGroupOffsets, rowOdd.getElseSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices); + toVectorRec(Cudd_T(dd), result, rowGroupOffsets, rowOdd.getThenSuccessor(), currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices); + } } void Add<DdType::CUDD>::toMatrixRec(DdNode const* dd, std::vector<uint_fast64_t>& rowIndications, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>>& columnsAndValues, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, Odd<DdType::CUDD> const& columnOdd, uint_fast64_t currentRowLevel, uint_fast64_t currentColumnLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, uint_fast64_t currentColumnOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices, std::vector<uint_fast64_t> const& ddColumnVariableIndices, bool generateValues) const { @@ -694,8 +895,39 @@ namespace storm { } } + void Add<DdType::CUDD>::splitGroupsRec(DdNode* dd1, DdNode* dd2, std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables1, std::set<storm::expressions::Variable> const& remainingMetaVariables2) const { + // For the empty DD, we do not need to create a group. + if (dd1 == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager()) && dd2 == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) { + return; + } + + if (currentLevel == maxLevel) { + groups.push_back(std::make_pair(Add<DdType::CUDD>(this->getDdManager(), ADD(this->getDdManager()->getCuddManager(), dd1), remainingMetaVariables1), Add<DdType::CUDD>(this->getDdManager(), ADD(this->getDdManager()->getCuddManager(), dd2), remainingMetaVariables2))); + } else if (ddGroupVariableIndices[currentLevel] < dd1->index) { + if (ddGroupVariableIndices[currentLevel] < dd2->index) { + splitGroupsRec(dd1, dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + splitGroupsRec(dd1, dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + } else { + splitGroupsRec(dd1, Cudd_T(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + splitGroupsRec(dd1, Cudd_E(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + } + } else if (ddGroupVariableIndices[currentLevel] < dd2->index) { + splitGroupsRec(Cudd_T(dd1), dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + splitGroupsRec(Cudd_E(dd1), dd2, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + } else { + splitGroupsRec(Cudd_T(dd1), Cudd_T(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + splitGroupsRec(Cudd_E(dd1), Cudd_E(dd2), groups, ddGroupVariableIndices, currentLevel + 1, maxLevel, remainingMetaVariables1, remainingMetaVariables2); + } + } + template<typename ValueType> - void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const { + void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const { + std::function<ValueType (ValueType const&, double const&)> fct = [] (ValueType const& a, double const& b) -> ValueType { return a + b; }; + modifyVectorRec(this->getCuddDdNode(), 0, ddVariableIndices.size(), 0, odd, ddVariableIndices, targetVector, fct); + } + + template<typename ValueType> + void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector, std::function<ValueType (ValueType const&, double const&)> const& function) const { // For the empty DD, we do not need to add any entries. if (dd == Cudd_ReadZero(this->getDdManager()->getCuddManager().getManager())) { return; @@ -703,16 +935,16 @@ namespace storm { // If we are at the maximal level, the value to be set is stored as a constant in the DD. if (currentLevel == maxLevel) { - targetVector[currentOffset] += static_cast<ValueType>(Cudd_V(dd)); + targetVector[currentOffset] = function(targetVector[currentOffset], Cudd_V(dd)); } else if (ddVariableIndices[currentLevel] < dd->index) { // If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set // and for the one in which it is not set. - addToVectorRec(dd, currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector); - addToVectorRec(dd, currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector); + modifyVectorRec(dd, currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector, function); + modifyVectorRec(dd, currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector, function); } else { // Otherwise, we simply recursively call the function for both (different) cases. - addToVectorRec(Cudd_E(dd), currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector); - addToVectorRec(Cudd_T(dd), currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector); + modifyVectorRec(Cudd_E(dd), currentLevel + 1, maxLevel, currentOffset, odd.getElseSuccessor(), ddVariableIndices, targetVector, function); + modifyVectorRec(Cudd_T(dd), currentLevel + 1, maxLevel, currentOffset + odd.getElseOffset(), odd.getThenSuccessor(), ddVariableIndices, targetVector, function); } } @@ -830,9 +1062,14 @@ namespace storm { // Explicitly instantiate some templated functions. template std::vector<double> Add<DdType::CUDD>::toVector() const; template std::vector<double> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const; - template void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector) const; + template void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector) const; + template void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<double>& targetVector, std::function<double (double const&, double const&)> const& function) const; + template std::vector<double> Add<DdType::CUDD>::toVector(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, std::vector<uint_fast64_t> groupOffsets) const; + template void Add<DdType::CUDD>::toVectorRec(DdNode const* dd, std::vector<double>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const; template std::vector<uint_fast64_t> Add<DdType::CUDD>::toVector() const; template std::vector<uint_fast64_t> Add<DdType::CUDD>::toVector(Odd<DdType::CUDD> const& rowOdd) const; - template void Add<DdType::CUDD>::addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector) const; + template void Add<DdType::CUDD>::addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector) const; + template void Add<DdType::CUDD>::modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<uint_fast64_t>& targetVector, std::function<uint_fast64_t (uint_fast64_t const&, double const&)> const& function) const; + } } \ No newline at end of file diff --git a/src/storage/dd/CuddAdd.h b/src/storage/dd/CuddAdd.h index 8d01839d6..01a57b629 100644 --- a/src/storage/dd/CuddAdd.h +++ b/src/storage/dd/CuddAdd.h @@ -1,6 +1,8 @@ #ifndef STORM_STORAGE_DD_CUDDADD_H_ #define STORM_STORAGE_DD_CUDDADD_H_ +#include <boost/optional.hpp> + #include "src/storage/dd/Add.h" #include "src/storage/dd/CuddDd.h" #include "src/storage/dd/CuddDdForwardIterator.h" @@ -512,7 +514,7 @@ namespace storm { /*! * Converts the ADD to a vector. * - * @return The double vector that is represented by this ADD. + * @return The vector that is represented by this ADD. */ template<typename ValueType> std::vector<ValueType> toVector() const; @@ -522,11 +524,23 @@ namespace storm { * each entry. * * @param rowOdd The ODD used for determining the correct row. - * @return The double vector that is represented by this ADD. + * @return The vector that is represented by this ADD. */ template<typename ValueType> std::vector<ValueType> toVector(storm::dd::Odd<DdType::CUDD> const& rowOdd) const; + /*! + * Converts the ADD to a row-grouped vector. The given offset-labeled DD is used to determine the correct + * row group of each entry. Note that the group meta variables are assumed to be at the very top in the + * variable ordering. + * + * @param groupMetaVariables The meta variables responsible for the row-grouping. + * @param rowOdd The ODD used for determining the correct row. + * @return The vector that is represented by this ADD. + */ + template<typename ValueType> + std::vector<ValueType> toVector(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, std::vector<uint_fast64_t> groupOffsets) const; + /*! * Converts the ADD to a (sparse) double matrix. All contained non-primed variables are assumed to encode the * row, whereas all primed variables are assumed to encode the column. @@ -563,14 +577,27 @@ namespace storm { * determine the correct row and column, respectively, for each entry. Note: this function assumes that * the meta variables used to distinguish different row groups are at the very top of the ADD. * - * @param rowMetaVariables The meta variables that encode the rows of the matrix. - * @param columnMetaVariables The meta variables that encode the columns of the matrix. * @param groupMetaVariables The meta variables that are used to distinguish different row groups. * @param rowOdd The ODD used for determining the correct row. * @param columnOdd The ODD used for determining the correct column. * @return The matrix that is represented by this ADD. */ - storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const; + storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const; + + /*! + * Converts the ADD to a row-grouped (sparse) double matrix and the given vector to a row-grouped vector. + * The given offset-labeled DDs are used to determine the correct row and column, respectively, for each + * entry. Note: this function assumes that the meta variables used to distinguish different row groups are + * at the very top of the ADD. + * + * @param vector The symbolic vector to convert. + * @param rowGroupSizes A vector specifying the sizes of the row groups. + * @param groupMetaVariables The meta variables that are used to distinguish different row groups. + * @param rowOdd The ODD used for determining the correct row. + * @param columnOdd The ODD used for determining the correct column. + * @return The matrix that is represented by this ADD. + */ + std::pair<storm::storage::SparseMatrix<double>, std::vector<double>> toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const; /*! * Exports the DD to the given file in the dot format. @@ -632,6 +659,40 @@ namespace storm { */ Add(std::shared_ptr<DdManager<DdType::CUDD> const> ddManager, ADD cuddAdd, std::set<storm::expressions::Variable> const& containedMetaVariables = std::set<storm::expressions::Variable>()); + /*! + * Converts the ADD to a row-grouped (sparse) double matrix. If the optional vector is given, it is also + * translated to an explicit row-grouped vector with the same row-grouping. The given offset-labeled DDs + * are used to determine the correct row and column, respectively, for each entry. Note: this function + * assumes that the meta variables used to distinguish different row groups are at the very top of the ADD. + * + * @param rowMetaVariables The meta variables that encode the rows of the matrix. + * @param columnMetaVariables The meta variables that encode the columns of the matrix. + * @param groupMetaVariables The meta variables that are used to distinguish different row groups. + * @param rowOdd The ODD used for determining the correct row. + * @param columnOdd The ODD used for determining the correct column. + * @return The matrix that is represented by this ADD and and a vector corresponding to the symbolic vector + * (if it was given). + */ + storm::storage::SparseMatrix<double> toMatrix(std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const; + + /*! + * Converts the ADD to a row-grouped (sparse) double matrix and the given vector to an equally row-grouped + * explicit vector. The given offset-labeled DDs are used to determine the correct row and column, + * respectively, for each entry. Note: this function assumes that the meta variables used to distinguish + * different row groups are at the very top of the ADD. + * + * @param vector The vector that is to be transformed to an equally grouped explicit vector. + * @param rowGroupSizes A vector specifying the sizes of the row groups. + * @param rowMetaVariables The meta variables that encode the rows of the matrix. + * @param columnMetaVariables The meta variables that encode the columns of the matrix. + * @param groupMetaVariables The meta variables that are used to distinguish different row groups. + * @param rowOdd The ODD used for determining the correct row. + * @param columnOdd The ODD used for determining the correct column. + * @return The matrix that is represented by this ADD and and a vector corresponding to the symbolic vector + * (if it was given). + */ + std::pair<storm::storage::SparseMatrix<double>,std::vector<double>> toMatrixVector(storm::dd::Add<storm::dd::DdType::CUDD> const& vector, std::vector<uint_fast64_t>&& rowGroupSizes, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd<DdType::CUDD> const& rowOdd, storm::dd::Odd<DdType::CUDD> const& columnOdd) const; + /*! * Helper function to convert the DD into a (sparse) matrix. * @@ -659,6 +720,21 @@ namespace storm { */ void toMatrixRec(DdNode const* dd, std::vector<uint_fast64_t>& rowIndications, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>>& columnsAndValues, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, Odd<DdType::CUDD> const& columnOdd, uint_fast64_t currentRowLevel, uint_fast64_t currentColumnLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, uint_fast64_t currentColumnOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices, std::vector<uint_fast64_t> const& ddColumnVariableIndices, bool generateValues = true) const; + /*! + * Helper function to convert the DD into a (sparse) vector. + * + * @param dd The DD to convert. + * @param result The vector that will hold the values upon successful completion. + * @param rowGroupOffsets The row offsets at which a given row group starts. + * @param rowOdd The ODD used for the row translation. + * @param currentRowLevel The currently considered row level in the DD. + * @param maxLevel The number of levels that need to be considered. + * @param currentRowOffset The current row offset. + * @param ddRowVariableIndices The (sorted) indices of all DD row variables that need to be considered. + */ + template<typename ValueType> + void toVectorRec(DdNode const* dd, std::vector<ValueType>& result, std::vector<uint_fast64_t> const& rowGroupOffsets, Odd<DdType::CUDD> const& rowOdd, uint_fast64_t currentRowLevel, uint_fast64_t maxLevel, uint_fast64_t currentRowOffset, std::vector<uint_fast64_t> const& ddRowVariableIndices) const; + /*! * Splits the given matrix DD into the groups using the given group variables. * @@ -672,7 +748,32 @@ namespace storm { void splitGroupsRec(DdNode* dd, std::vector<Add<DdType::CUDD>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables) const; /*! - * Performs a recursive step to add the given DD-based vector to the given explicit vector. + * Splits the given matrix and vector DDs into the groups using the given group variables. + * + * @param dd1 The matrix DD to split. + * @param dd2 The vector DD to split. + * @param groups A vector that is to be filled with the pairs of matrix/vector DDs for the individual groups. + * @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered. + * @param currentLevel The currently considered level in the DD. + * @param maxLevel The number of levels that need to be considered. + * @param remainingMetaVariables1 The meta variables that remain in the matrix DD after the groups have been split. + * @param remainingMetaVariables2 The meta variables that remain in the vector DD after the groups have been split. + */ + void splitGroupsRec(DdNode* dd1, DdNode* dd2, std::vector<std::pair<Add<DdType::CUDD>, Add<DdType::CUDD>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel, std::set<storm::expressions::Variable> const& remainingMetaVariables1, std::set<storm::expressions::Variable> const& remainingMetaVariables2) const; + + /*! + * Adds the current (DD-based) vector to the given explicit one. + * + * @param odd The ODD used for the translation. + * @param ddVariableIndices The (sorted) indices of all DD variables that need to be considered. + * @param targetVector The vector to which the translated DD-based vector is to be added. + */ + template<typename ValueType> + void addToVector(Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const; + + /*! + * Performs a recursive step to perform the given function between the given DD-based vector to the given + * explicit vector. * * @param dd The DD to add to the explicit vector. * @param currentLevel The currently considered level in the DD. @@ -683,7 +784,7 @@ namespace storm { * @param targetVector The vector to which the translated DD-based vector is to be added. */ template<typename ValueType> - void addToVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector) const; + void modifyVectorRec(DdNode const* dd, uint_fast64_t currentLevel, uint_fast64_t maxLevel, uint_fast64_t currentOffset, Odd<DdType::CUDD> const& odd, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<ValueType>& targetVector, std::function<ValueType (ValueType const&, double const&)> const& function) const; /*! * Builds an ADD representing the given vector. diff --git a/src/storage/dd/CuddOdd.cpp b/src/storage/dd/CuddOdd.cpp index 46ed679b6..29301957e 100644 --- a/src/storage/dd/CuddOdd.cpp +++ b/src/storage/dd/CuddOdd.cpp @@ -106,6 +106,22 @@ namespace storm { return result; } + void Odd<DdType::CUDD>::expandExplicitVector(storm::dd::Odd<DdType::CUDD> const& newOdd, std::vector<double> const& oldValues, std::vector<double>& newValues) const { + expandValuesToVectorRec(0, *this, oldValues, 0, newOdd, newValues); + } + + void Odd<DdType::CUDD>::expandValuesToVectorRec(uint_fast64_t oldOffset, storm::dd::Odd<DdType::CUDD> const& oldOdd, std::vector<double> const& oldValues, uint_fast64_t newOffset, storm::dd::Odd<DdType::CUDD> const& newOdd, std::vector<double>& newValues) { + if (oldOdd.isTerminalNode()) { + STORM_LOG_THROW(newOdd.isTerminalNode(), storm::exceptions::InvalidArgumentException, "The ODDs for the translation must have the same height."); + if (oldOdd.getThenOffset() != 0) { + newValues[newOffset] += oldValues[oldOffset]; + } + } else { + expandValuesToVectorRec(oldOffset, oldOdd.getElseSuccessor(), oldValues, newOffset, newOdd.getElseSuccessor(), newValues); + expandValuesToVectorRec(oldOffset + oldOdd.getElseOffset(), oldOdd.getThenSuccessor(), oldValues, newOffset + newOdd.getElseOffset(), newOdd.getThenSuccessor(), newValues); + } + } + void Odd<DdType::CUDD>::addSelectedValuesToVectorRec(DdNode* dd, Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector<uint_fast64_t> const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd<DdType::CUDD> const& odd, std::vector<double>& result, uint_fast64_t& currentIndex, std::vector<double> const& values) { // If there are no more values to select, we can directly return. if (dd == Cudd_ReadLogicZero(manager.getManager()) && !complement) { diff --git a/src/storage/dd/CuddOdd.h b/src/storage/dd/CuddOdd.h index 4a03a3c26..e00bdd2c7 100644 --- a/src/storage/dd/CuddOdd.h +++ b/src/storage/dd/CuddOdd.h @@ -112,6 +112,16 @@ namespace storm { */ std::vector<double> filterExplicitVector(storm::dd::Bdd<DdType::CUDD> const& selectedValues, std::vector<double> const& values) const; + /*! + * Adds the old values to the new values. It does so by writing the old values at their correct positions + * wrt. to the new ODD. + * + * @param newOdd The new ODD to use. + * @param oldValues The old vector of values (which is being read). + * @param newValues The new vector of values (which is being written). + */ + void expandExplicitVector(storm::dd::Odd<DdType::CUDD> const& newOdd, std::vector<double> const& oldValues, std::vector<double>& newValues) const; + private: // Declare a hash functor that is used for the unique tables in the construction process. class HashFunctor { @@ -159,7 +169,6 @@ namespace storm { */ static std::shared_ptr<Odd<DdType::CUDD>> buildOddFromBddRec(DdNode* dd, Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector<uint_fast64_t> const& ddVariableIndices, std::vector<std::unordered_map<std::pair<DdNode*, bool>, std::shared_ptr<Odd<DdType::CUDD>>, HashFunctor>>& uniqueTableForLevels); - /*! * Adds the selected values the target vector. * @@ -176,6 +185,19 @@ namespace storm { */ static void addSelectedValuesToVectorRec(DdNode* dd, Cudd const& manager, uint_fast64_t currentLevel, bool complement, uint_fast64_t maxLevel, std::vector<uint_fast64_t> const& ddVariableIndices, uint_fast64_t currentOffset, storm::dd::Odd<DdType::CUDD> const& odd, std::vector<double>& result, uint_fast64_t& currentIndex, std::vector<double> const& values); + /*! + * Adds the values of the old explicit values to the new explicit values where the positions in the old vector + * are given by the current old ODD and the positions in the new vector are given by the new ODD. + * + * @param oldOffset The offset in the old explicit values. + * @param oldOdd The ODD to use for the old explicit values. + * @param oldValues The vector of old values. + * @param newOffset The offset in the new explicit values. + * @param newOdd The ODD to use for the new explicit values. + * @param newValues The vector of new values. + */ + static void expandValuesToVectorRec(uint_fast64_t oldOffset, storm::dd::Odd<DdType::CUDD> const& oldOdd, std::vector<double> const& oldValues, uint_fast64_t newOffset, storm::dd::Odd<DdType::CUDD> const& newOdd, std::vector<double>& newValues); + // The then- and else-nodes. std::shared_ptr<Odd<DdType::CUDD>> elseNode; std::shared_ptr<Odd<DdType::CUDD>> thenNode; diff --git a/src/storage/prism/Program.cpp b/src/storage/prism/Program.cpp index 2dbc33eb9..258d4e14d 100644 --- a/src/storage/prism/Program.cpp +++ b/src/storage/prism/Program.cpp @@ -595,6 +595,7 @@ namespace storm { // Check the commands of the modules. bool hasProbabilisticCommand = false; bool hasMarkovianCommand = false; + bool hasLabeledMarkovianCommand = false; for (auto const& module : this->getModules()) { std::set<storm::expressions::Variable> legalVariables = globalVariables; for (auto const& variable : module.getBooleanVariables()) { @@ -621,11 +622,7 @@ namespace storm { // If the command is Markovian and labeled, we throw an error or raise a warning, depending on // whether or not the PRISM compatibility mode was enabled. if (command.isMarkovian() && command.isLabeled()) { - if (storm::settings::generalSettings().isPrismCompatibilityEnabled()) { - STORM_LOG_WARN_COND(false, "The model uses synchronizing Markovian commands. This may lead to unexpected verification results, because of unclear semantics."); - } else { - STORM_LOG_THROW(false, storm::exceptions::WrongFormatException, "The model uses synchronizing Markovian commands. This may lead to unexpected verification results, because of unclear semantics."); - } + hasLabeledMarkovianCommand = true; } // Check all updates. @@ -665,6 +662,14 @@ namespace storm { } } + if (hasLabeledMarkovianCommand) { + if (storm::settings::generalSettings().isPrismCompatibilityEnabled()) { + STORM_LOG_WARN_COND(false, "The model uses synchronizing Markovian commands. This may lead to unexpected verification results, because of unclear semantics."); + } else { + STORM_LOG_THROW(false, storm::exceptions::WrongFormatException, "The model uses synchronizing Markovian commands. This may lead to unexpected verification results, because of unclear semantics."); + } + } + if (this->getModelType() == Program::ModelType::DTMC || this->getModelType() == Program::ModelType::MDP) { STORM_LOG_THROW(!hasMarkovianCommand, storm::exceptions::WrongFormatException, "Discrete-time model must not have Markovian commands."); } else if (this->getModelType() == Program::ModelType::CTMC) { diff --git a/src/utility/cli.h b/src/utility/cli.h index 9d21378c4..351584e78 100644 --- a/src/utility/cli.h +++ b/src/utility/cli.h @@ -68,6 +68,8 @@ log4cplus::Logger printer; #include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h" #include "src/modelchecker/csl/SparseCtmcCslModelChecker.h" #include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h" +#include "src/modelchecker/csl/HybridCtmcCslModelChecker.h" +#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" #include "src/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" @@ -317,8 +319,12 @@ namespace storm { std::string constants = settings.getConstantDefinitionString(); bool buildRewards = false; - if (formula) { + boost::optional<std::string> rewardModelName; + if (formula || settings.isSymbolicRewardModelNameSet()) { buildRewards = formula.get()->isRewardOperatorFormula() || formula.get()->isRewardPathFormula(); + if (settings.isSymbolicRewardModelNameSet()) { + rewardModelName = settings.getSymbolicRewardModelName(); + } } // Customize and perform model-building. @@ -328,6 +334,8 @@ namespace storm { options = typename storm::builder::ExplicitPrismModelBuilder<ValueType>::Options(*formula.get()); } options.addConstantDefinitionsFromString(program, settings.getConstantDefinitionString()); + options.buildRewards = buildRewards; + options.rewardModelName = rewardModelName; // Generate command labels if we are going to build a counterexample later. if (storm::settings::counterexampleGeneratorSettings().isMinimalCommandSetGenerationSet()) { @@ -341,7 +349,9 @@ namespace storm { options = typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options(*formula.get()); } options.addConstantDefinitionsFromString(program, settings.getConstantDefinitionString()); - + options.buildRewards = buildRewards; + options.rewardModelName = rewardModelName; + result = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); } @@ -503,6 +513,18 @@ namespace storm { if (modelchecker.canHandle(*formula.get())) { result = modelchecker.check(*formula.get()); } + } else if (model->getType() == storm::models::ModelType::Ctmc) { + std::shared_ptr<storm::models::symbolic::Ctmc<DdType>> ctmc = model->template as<storm::models::symbolic::Ctmc<DdType>>(); + storm::modelchecker::HybridCtmcCslModelChecker<DdType, double> modelchecker(*ctmc); + if (modelchecker.canHandle(*formula.get())) { + result = modelchecker.check(*formula.get()); + } + } else if (model->getType() == storm::models::ModelType::Mdp) { + std::shared_ptr<storm::models::symbolic::Mdp<DdType>> mdp = model->template as<storm::models::symbolic::Mdp<DdType>>(); + storm::modelchecker::HybridMdpPrctlModelChecker<DdType, double> modelchecker(*mdp); + if (modelchecker.canHandle(*formula.get())) { + result = modelchecker.check(*formula.get()); + } } else { STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "This functionality is not yet implemented."); } @@ -607,7 +629,9 @@ namespace storm { while (inputFileStream.good()) { std::string prop; std::getline(inputFileStream, prop); - properties.push_back(prop); + if (!prop.empty()) { + properties.push_back(prop); + } } } catch (std::exception& e) { @@ -621,14 +645,19 @@ namespace storm { for (std::string prop : properties) { boost::optional<std::shared_ptr<storm::logic::Formula>> formula; - if (program) { - storm::parser::FormulaParser formulaParser(program.get().getManager().getSharedPointer()); - formula = formulaParser.parseFromString(prop); - } else { - storm::parser::FormulaParser formulaParser; - formula = formulaParser.parseFromString(prop); + try { + if (program) { + storm::parser::FormulaParser formulaParser(program.get().getManager().getSharedPointer()); + formula = formulaParser.parseFromString(prop); + } else { + storm::parser::FormulaParser formulaParser; + formula = formulaParser.parseFromString(prop); + } + formulas.push_back(formula); + } + catch (storm::exceptions::WrongFormatException &e) { + STORM_LOG_WARN("Unable to parse line as formula: " << prop); } - formulas.push_back(formula); } std::cout << "Parsed " << formulas.size() << " properties from file " << settings.getPropertiesFilename() << std::endl; } diff --git a/src/utility/graph.h b/src/utility/graph.h index 3c04feb86..fb8bdb158 100644 --- a/src/utility/graph.h +++ b/src/utility/graph.h @@ -947,7 +947,7 @@ namespace storm { result.second = performProb1E(model, transitionMatrix, phiStates, psiStates, !result.first && model.getReachableStates()); return result; } - + template <storm::dd::DdType Type> std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Min(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) { std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result; diff --git a/test/functional/builder/leader4.nm b/test/functional/builder/leader4.nm new file mode 100644 index 000000000..9fbf259c4 --- /dev/null +++ b/test/functional/builder/leader4.nm @@ -0,0 +1,88 @@ +// asynchronous leader election +// 4 processes +// gxn/dxp 29/01/01 + +mdp + +const int N = 4; // number of processes + +module process1 + + // COUNTER + c1 : [0..N-1]; + + // STATES + s1 : [0..4]; + // 0 make choice + // 1 have not received neighbours choice + // 2 active + // 3 inactive + // 4 leader + + // PREFERENCE + p1 : [0..1]; + + // VARIABLES FOR SENDING AND RECEIVING + receive1 : [0..2]; + // not received anything + // received choice + // received counter + sent1 : [0..2]; + // not send anything + // sent choice + // sent counter + + // pick value + [] (s1=0) -> 0.5 : (s1'=1) & (p1'=0) + 0.5 : (s1'=1) & (p1'=1); + + // send preference + [p12] (s1=1) & (sent1=0) -> (sent1'=1); + // receive preference + // stay active + [p41] (s1=1) & (receive1=0) & !( (p1=0) & (p4=1) ) -> (s1'=2) & (receive1'=1); + // become inactive + [p41] (s1=1) & (receive1=0) & (p1=0) & (p4=1) -> (s1'=3) & (receive1'=1); + + // send preference (can now reset preference) + [p12] (s1=2) & (sent1=0) -> (sent1'=1) & (p1'=0); + // send counter (already sent preference) + // not received counter yet + [c12] (s1=2) & (sent1=1) & (receive1=1) -> (sent1'=2); + // received counter (pick again) + [c12] (s1=2) & (sent1=1) & (receive1=2) -> (s1'=0) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0); + + // receive counter and not sent yet (note in this case do not pass it on as will send own counter) + [c41] (s1=2) & (receive1=1) & (sent1<2) -> (receive1'=2); + // receive counter and sent counter + // only active process (decide) + [c41] (s1=2) & (receive1=1) & (sent1=2) & (c4=N-1) -> (s1'=4) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0); + // other active process (pick again) + [c41] (s1=2) & (receive1=1) & (sent1=2) & (c4<N-1) -> (s1'=0) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0); + + // send preference (must have received preference) and can now reset + [p12] (s1=3) & (receive1>0) & (sent1=0) -> (sent1'=1) & (p1'=0); + // send counter (must have received counter first) and can now reset + [c12] (s1=3) & (receive1=2) & (sent1=1) -> (s1'=3) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0); + + // receive preference + [p41] (s1=3) & (receive1=0) -> (p1'=p4) & (receive1'=1); + // receive counter + [c41] (s1=3) & (receive1=1) & (c4<N-1) -> (c1'=c4+1) & (receive1'=2); + + // done + [done] (s1=4) -> (s1'=s1); + // add loop for processes who are inactive + [done] (s1=3) -> (s1'=s1); + +endmodule + +module process2=process1[s1=s2,p1=p2,c1=c2,sent1=sent2,receive1=receive2,p12=p23,p41=p12,c12=c23,c41=c12,p4=p1,c4=c1] endmodule +module process3=process1[s1=s3,p1=p3,c1=c3,sent1=sent3,receive1=receive3,p12=p34,p41=p23,c12=c34,c41=c23,p4=p2,c4=c2] endmodule +module process4=process1[s1=s4,p1=p4,c1=c4,sent1=sent4,receive1=receive4,p12=p41,p41=p34,c12=c41,c41=c34,p4=p3,c4=c3] endmodule + +// reward - expected number of rounds (equals the number of times a process receives a counter) +rewards "rounds" + [c12] true : 1; +endrewards + +label "elected" = s1=4|s2=4|s3=4|s4=4; diff --git a/test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp b/test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp index 5c637afcb..4c79aa929 100644 --- a/test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp +++ b/test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp @@ -52,26 +52,40 @@ TEST(GmmxxCtmcCslModelCheckerTest, Cluster) { storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult2 = checkResult->asExplicitQuantitativeCheckResult<double>(); EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2[initialState], storm::settings::generalSettings().getPrecision()); - formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); + formula = formulaParser.parseFromString("P=? [ F[100,2000] !\"minimum\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult3 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(1, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); - formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); + formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult4 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(0, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); - formula = formulaParser.parseFromString("R=? [C<=100]"); + formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult5 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); + storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult6 = checkResult->asExplicitQuantitativeCheckResult<double>(); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6[initialState], storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=100]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); + storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult7 = checkResult->asExplicitQuantitativeCheckResult<double>(); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7[initialState], storm::settings::generalSettings().getPrecision()); } TEST(GmmxxCtmcCslModelCheckerTest, Embedded) { @@ -134,7 +148,7 @@ TEST(GmmxxCtmcCslModelCheckerTest, Embedded) { ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult5 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(2.7720429852369946, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); } TEST(GmmxxCtmcCslModelCheckerTest, Polling) { diff --git a/test/functional/modelchecker/GmmxxHybridCtmcCslModelCheckerTest.cpp b/test/functional/modelchecker/GmmxxHybridCtmcCslModelCheckerTest.cpp new file mode 100644 index 000000000..522e61691 --- /dev/null +++ b/test/functional/modelchecker/GmmxxHybridCtmcCslModelCheckerTest.cpp @@ -0,0 +1,279 @@ +#include "gtest/gtest.h" +#include "storm-config.h" +#include "src/settings/SettingMemento.h" +#include "src/parser/PrismParser.h" +#include "src/parser/FormulaParser.h" +#include "src/logic/Formulas.h" +#include "src/builder/DdPrismModelBuilder.h" +#include "src/storage/dd/DdType.h" + +#include "src/utility/solver.h" +#include "src/modelchecker/csl/HybridCtmcCslModelChecker.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" + +#include "src/settings/SettingsManager.h" + +TEST(GmmxxHybridCtmcCslModelCheckerTest, Cluster) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/cluster2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "num_repairs"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=100 !\"minimum\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F[100,100] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F[100,2000] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=100]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(GmmxxHybridCtmcCslModelCheckerTest, Embedded) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/embedded2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "up"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=10000 \"down\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_actuators\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_io\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_sensors\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=10000]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(GmmxxHybridCtmcCslModelCheckerTest, Polling) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/polling2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=?[ F<=10 \"target\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(GmmxxHybridCtmcCslModelCheckerTest, Fms) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // No properties to check at this point. +} + +TEST(GmmxxHybridCtmcCslModelCheckerTest, Tandem) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/tandem5.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model with the customers reward structure. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "customers"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=10 \"network_full\" ]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F<=10 \"first_queue_full\" ]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [\"second_queue_full\" U<=1 !\"second_queue_full\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [I=10]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=10]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [F \"first_queue_full\"&\"second_queue_full\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(262.85103498583413, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(262.85103498583413, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision()); +} diff --git a/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp new file mode 100644 index 000000000..3a7cd5402 --- /dev/null +++ b/test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp @@ -0,0 +1,190 @@ +#include "gtest/gtest.h" +#include "storm-config.h" + +#include "src/logic/Formulas.h" +#include "src/utility/solver.h" +#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" +#include "src/parser/PrismParser.h" +#include "src/builder/DdPrismModelBuilder.h" +#include "src/models/symbolic/Dtmc.h" +#include "src/settings/SettingsManager.h" + +TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "coinflips"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(169, model->getNumberOfStates()); + EXPECT_EQ(436, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); + + std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("four"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); + auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); + + result = checker.check(*minRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); + + result = checker.check(*maxRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); +} + +TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "rounds"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(3172, model->getNumberOfStates()); + EXPECT_EQ(7144, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); + + std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxMinMaxLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true); + auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 25); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); + auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); + + result = checker.check(*minRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); + + result = checker.check(*maxRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); +} diff --git a/test/functional/modelchecker/SparseCtmcCslModelCheckerTest.cpp b/test/functional/modelchecker/NativeCtmcCslModelCheckerTest.cpp similarity index 92% rename from test/functional/modelchecker/SparseCtmcCslModelCheckerTest.cpp rename to test/functional/modelchecker/NativeCtmcCslModelCheckerTest.cpp index 9db619115..688acda91 100644 --- a/test/functional/modelchecker/SparseCtmcCslModelCheckerTest.cpp +++ b/test/functional/modelchecker/NativeCtmcCslModelCheckerTest.cpp @@ -51,27 +51,41 @@ TEST(SparseCtmcCslModelCheckerTest, Cluster) { ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult2 = checkResult->asExplicitQuantitativeCheckResult<double>(); EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2[initialState], storm::settings::generalSettings().getPrecision()); - - formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); + + formula = formulaParser.parseFromString("P=? [ F[100,2000] !\"minimum\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult3 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(1, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); - - formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult4 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(0, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); - formula = formulaParser.parseFromString("R=? [C<=100]"); + formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); checkResult = modelchecker.check(*formula); ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult5 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); + storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult6 = checkResult->asExplicitQuantitativeCheckResult<double>(); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6[initialState], storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=100]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); + storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult7 = checkResult->asExplicitQuantitativeCheckResult<double>(); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7[initialState], storm::settings::generalSettings().getPrecision()); } TEST(SparseCtmcCslModelCheckerTest, Embedded) { @@ -133,7 +147,7 @@ TEST(SparseCtmcCslModelCheckerTest, Embedded) { ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult5 = checkResult->asExplicitQuantitativeCheckResult<double>(); - EXPECT_NEAR(2.7720429852369946, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision()); } TEST(SparseCtmcCslModelCheckerTest, Polling) { diff --git a/test/functional/modelchecker/SparseDtmcPrctlModelCheckerTest.cpp b/test/functional/modelchecker/NativeDtmcPrctlModelCheckerTest.cpp similarity index 100% rename from test/functional/modelchecker/SparseDtmcPrctlModelCheckerTest.cpp rename to test/functional/modelchecker/NativeDtmcPrctlModelCheckerTest.cpp diff --git a/test/functional/modelchecker/NativeHybridCtmcCslModelCheckerTest.cpp b/test/functional/modelchecker/NativeHybridCtmcCslModelCheckerTest.cpp new file mode 100644 index 000000000..ab90e8960 --- /dev/null +++ b/test/functional/modelchecker/NativeHybridCtmcCslModelCheckerTest.cpp @@ -0,0 +1,279 @@ +#include "gtest/gtest.h" +#include "storm-config.h" +#include "src/settings/SettingMemento.h" +#include "src/parser/PrismParser.h" +#include "src/parser/FormulaParser.h" +#include "src/logic/Formulas.h" +#include "src/builder/DdPrismModelBuilder.h" +#include "src/storage/dd/DdType.h" + +#include "src/utility/solver.h" +#include "src/modelchecker/csl/HybridCtmcCslModelChecker.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" + +#include "src/settings/SettingsManager.h" + +TEST(NativeHybridCtmcCslModelCheckerTest, Cluster) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/cluster2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "num_repairs"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=100 !\"minimum\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F[100,100] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F[100,2000] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=100]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(NativeHybridCtmcCslModelCheckerTest, Embedded) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/embedded2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "up"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=10000 \"down\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_actuators\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_io\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_sensors\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=10000]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(NativeHybridCtmcCslModelCheckerTest, Polling) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/polling2.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model. + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=?[ F<=10 \"target\"]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); +} + +TEST(NativeHybridCtmcCslModelCheckerTest, Fms) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // No properties to check at this point. +} + +TEST(NativeHybridCtmcCslModelCheckerTest, Tandem) { + // Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed. + std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true); + + // Parse the model description. + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/tandem5.sm"); + storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); + std::shared_ptr<storm::logic::Formula> formula(nullptr); + + // Build the model with the customers reward structure. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "customers"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); + std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::CUDD>>(); + + // Create model checker. + storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + // Start checking properties. + formula = formulaParser.parseFromString("P=? [ F<=10 \"network_full\" ]"); + std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [ F<=10 \"first_queue_full\" ]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("P=? [\"second_queue_full\" U<=1 !\"second_queue_full\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(1, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [I=10]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [C<=10]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision()); + + formula = formulaParser.parseFromString("R=? [F \"first_queue_full\"&\"second_queue_full\"]"); + checkResult = modelchecker.check(*formula); + + ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult()); + checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision()); + EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision()); +} diff --git a/test/functional/modelchecker/NativeHybridDtmcPrctlModelCheckerTest.cpp b/test/functional/modelchecker/NativeHybridDtmcPrctlModelCheckerTest.cpp new file mode 100644 index 000000000..8cd46bcb1 --- /dev/null +++ b/test/functional/modelchecker/NativeHybridDtmcPrctlModelCheckerTest.cpp @@ -0,0 +1,165 @@ +#include "gtest/gtest.h" +#include "storm-config.h" + +#include "src/logic/Formulas.h" +#include "src/utility/solver.h" +#include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" +#include "src/parser/PrismParser.h" +#include "src/builder/DdPrismModelBuilder.h" +#include "src/models/symbolic/Dtmc.h" +#include "src/settings/SettingsManager.h" + +TEST(NativeHybridDtmcPrctlModelCheckerTest, Die) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die.pm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "coin_flips"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(13, model->getNumberOfStates()); + EXPECT_EQ(20, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc); + + std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("one"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + auto done = std::make_shared<storm::logic::AtomicLabelFormula>("done"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(done); + + result = checker.check(*reachabilityRewardFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(3.6666646003723145, quantitativeResult4.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(3.6666646003723145, quantitativeResult4.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); +} + +TEST(NativeHybridDtmcPrctlModelCheckerTest, Crowds) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/crowds-5-5.pm"); + + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program); + EXPECT_EQ(8607, model->getNumberOfStates()); + EXPECT_EQ(15113, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc); + + std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("observe0Greater1"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.33288205191646525, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.33288205191646525, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("observeIGreater1"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.15222066094730619, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.15222066094730619, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("observeOnlyTrueSender"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.32153900158185761, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.32153900158185761, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); +} + +TEST(NativeHybridDtmcPrctlModelCheckerTest, SynchronousLeader) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader-3-5.pm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "num_rounds"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(273, model->getNumberOfStates()); + EXPECT_EQ(397, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc); + + std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*eventuallyFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true); + auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 20); + + result = checker.check(*boundedUntilFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); + + result = checker.check(*reachabilityRewardFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision()); +} + diff --git a/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp new file mode 100644 index 000000000..1b1af244d --- /dev/null +++ b/test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp @@ -0,0 +1,190 @@ +#include "gtest/gtest.h" +#include "storm-config.h" + +#include "src/logic/Formulas.h" +#include "src/utility/solver.h" +#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h" +#include "src/modelchecker/results/HybridQuantitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h" +#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h" +#include "src/parser/PrismParser.h" +#include "src/builder/DdPrismModelBuilder.h" +#include "src/models/symbolic/Dtmc.h" +#include "src/settings/SettingsManager.h" + +TEST(NativeHybridMdpPrctlModelCheckerTest, Dice) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "coinflips"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(169, model->getNumberOfStates()); + EXPECT_EQ(436, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); + + std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("three"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("four"); + eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); + auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); + + result = checker.check(*minRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(7.3333283960819244, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); + + result = checker.check(*maxRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(7.3333283960819244, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); +} + +TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) { + storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm"); + + // Build the die model with its reward model. + typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options; + options.buildRewards = true; + options.rewardModelName = "rounds"; + std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::translateProgram(program, options); + EXPECT_EQ(3172, model->getNumberOfStates()); + EXPECT_EQ(7144, model->getNumberOfTransitions()); + + ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp); + + std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>(); + + storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory<double>())); + + auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(labelFormula); + auto minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, eventuallyFormula); + + std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, eventuallyFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto trueFormula = std::make_shared<storm::logic::BooleanLiteralFormula>(true); + auto boundedUntilFormula = std::make_shared<storm::logic::BoundedUntilFormula>(trueFormula, labelFormula, 25); + minProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Minimize, boundedUntilFormula); + + result = checker.check(*minProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + maxProbabilityOperatorFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(storm::logic::OptimalityType::Maximize, boundedUntilFormula); + + result = checker.check(*maxProbabilityOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); + auto reachabilityRewardFormula = std::make_shared<storm::logic::ReachabilityRewardFormula>(labelFormula); + auto minRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Minimize, reachabilityRewardFormula); + + result = checker.check(*minRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(4.2856925589077264, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); + + auto maxRewardOperatorFormula = std::make_shared<storm::logic::RewardOperatorFormula>(storm::logic::OptimalityType::Maximize, reachabilityRewardFormula); + + result = checker.check(*maxRewardOperatorFormula); + result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates())); + storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD>(); + + EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(4.2856953906798676, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision()); +} diff --git a/test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/NativeMdpPrctlModelCheckerTest.cpp similarity index 100% rename from test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp rename to test/functional/modelchecker/NativeMdpPrctlModelCheckerTest.cpp diff --git a/test/functional/storage/CuddDdTest.cpp b/test/functional/storage/CuddDdTest.cpp index 6255e912c..f8b149c2d 100644 --- a/test/functional/storage/CuddDdTest.cpp +++ b/test/functional/storage/CuddDdTest.cpp @@ -351,7 +351,7 @@ TEST(CuddDd, AddOddTest) { EXPECT_EQ(25, matrix.getNonzeroEntryCount()); dd = manager->getRange(x.first).toAdd() * manager->getRange(x.second).toAdd() * manager->getEncoding(a.first, 0).toAdd().ite(dd, dd + manager->getConstant(1)); - ASSERT_NO_THROW(matrix = dd.toMatrix({x.first}, {x.second}, {a.first}, rowOdd, columnOdd)); + ASSERT_NO_THROW(matrix = dd.toMatrix({a.first}, rowOdd, columnOdd)); EXPECT_EQ(18, matrix.getRowCount()); EXPECT_EQ(9, matrix.getRowGroupCount()); EXPECT_EQ(9, matrix.getColumnCount()); @@ -398,7 +398,7 @@ TEST(CuddDd, BddOddTest) { EXPECT_EQ(25, matrix.getNonzeroEntryCount()); dd = manager->getRange(x.first).toAdd() * manager->getRange(x.second).toAdd() * manager->getEncoding(a.first, 0).toAdd().ite(dd, dd + manager->getConstant(1)); - ASSERT_NO_THROW(matrix = dd.toMatrix({x.first}, {x.second}, {a.first}, rowOdd, columnOdd)); + ASSERT_NO_THROW(matrix = dd.toMatrix({a.first}, rowOdd, columnOdd)); EXPECT_EQ(18, matrix.getRowCount()); EXPECT_EQ(9, matrix.getRowGroupCount()); EXPECT_EQ(9, matrix.getColumnCount());